|  |
| :---: |
| 备risutifir 7 OLu |

## Bituminous shallo．

In addition to the notice jou have taken in the Scientific American of the manufacture of bituminous shale，in England，to grest ad－ vantage，I have observed the following notice of the same subject，by the London correspon dent of the National Intelligencer
＂In England a company has been formed for the conversion，by distillation，of the Kim－ meridge coal，or bitaminous shale of Dorset－ shire，into mineral oil or spirit，asphalt，and manure，so as to leave a profit of 100 per cent．on the expenditure．The manure，which is sold at $£ 2$ 10s．per ton，has been tried on various crops with the most satisfactory re sults，and is said to be equal in its effects to guano，phosphate of lime，or any other arti－ ficial manure now in use．We may mention， in connection with these marvels of mudern chemistry，that a company of gentlemen is now engaged in the neighborhood of Liver－ pool，is making experiments for the purpose of reducing the price of gas．These gentlemen speak with the utmost confidence of being able to procure from coal a much larger amount ol gas than has hitherto been obtained，and also to get from the residuum products of very con－ siderable value，so as，in fact，to enable them， if they chose，when the necessary apparatus was erectod，to light a large town for nothing， and yet realize a proft．However，if they should succeed in reducing the price of gas 50 per cent．we shall be much indebted to them．＇ The principal object I have in view is to in form you that there is on the Miami River，of Lake Erie，inerhaustible quantities of Kim－ meridge cosl or bituminous absle，and lying in the most convenient situation for excavation and transportation．The bed of the Miami River passes some 30 or 40 miles over it，and in many places lies bare．The Wabash and Erie Canal also pass over it，parallel to the Miami River．The Anglaise River，a branch of the Miami，comes in at Defance over this bitumi－ nous shale－the shale crops out in the bed of this for many miles．There are some places on the latter river where the shule has im－ bedded in it a large proportion of sulphuret of copper，in a pyramidial form－from the aize of pea，to that of a man＇s fist．It is princi－ pally in situ，although there is considerable lying loose on the surface．It is well known to mineralogists that the residuum，after burn－ ing，to clay．In some places the clay is a per－ fect white，this we think would make fine pot－ tery．In general the clay appears to be stain－ ed by some iron contained in the stone．

B．F．Sticeney．

## For the Scientific Amerioan．

Orystalization．
The word crystal originally signified ice， but it was afterwards applied by the ancients to crystalized silica or rock crystal；because they considered that boily as nothing else than water solidified by extreme cold．Che． miste afterwayds applied the name to all ne－ tural transparent bodies of a regular shape； and it is at present employed by them to de－ signate the regular forms which solid bodies assume when their particles have full liber－ ty to combine according to the laws of co－ hesion．These regular bodies occur very fre－ quently in the mineral kingdom，and havelong attracted attention on account of their great regularity and beauty．
Of all mineral bodies，the substances known $2 a$ alta，most frequently take the crystaline form；and as they are mostly soluble in wa－ ter，the chemist can，by solution and evapora－ tion obtain crystals at his pleasure．
It has long been observed by chemists that each individual salt，or other crystalizable sub－ stance，affect，a determinate form，which it will always take，if free to do se，on evapora－ tion from solution，or cooling from fusion．
A few of the most common forms of crys－ talization are here given ：common salt forms regular cubes；alum octahedrons；saltpetre， six－sided prisma ；aulphate of magnesia（epsom salts），four sided prisms ；this last containe upwards of fifty per cent．of the water of
crystalization，which causes it to undergo the aqueous fusion when heated．Common aalt contains no water of crystalization，properly cally included in ita crystals．Dry salts，when heated，undergo the igneous fusion．Many in－ genious theories have，at various times，been proposed by men of science to explain the phenomena of crystalization ；the most satisfac－ tory of which assumes that the minute invisible atome of all substance have a particular form， and that，when forced to unite by the force of cohesion，this aggregation makes up the regu－ lar form which we call a cryatal；and that this form is that which is possessed by its nent atoms．

H．W．H．
Claremont，N．H．
For the Soientifio Americen．
Hydraulics．
（Continued from page 180）
Fig． 24.


Re－action Water Wheels．－About 300 patents have been granted for different kinds of water－wheels and improvements on the same．Owing to the loose way in which the Patent Office business was conducted previous to 1836，there is but too little kr．own of the earlier American inventions．There can be no doubt but the sarre things have been pa－ tented over and over again．The first patent granted for a＂Re－action Water－Wheel＂was to Jas．McComb，of Princeton，N．J．，in Allg． 26，1791；the next to Joel Farnam，of Oswe－ go，N．Y．，in 1808 ；the nert for wheels in the same class was to Zebulon Parker and Ro－ bertMcKelvey，of Ohio，heirs at law of Austin Parker．This wan in October，1829，for＇a ＂Re－action and Percussion Wheel．＂Allour American authors，with too little personal ex－ amination into the subject give Calvin Wing， of N．H．，the credit of being the first Ameri－ can patentee，but his patent dates eractly a year after Parker＇s and 22 years after Far nam＇s．European authors have followed in their wake and copied the same mistake．The difference between the Barker Mill and the reaction wheel commences at the outset in the form of the wheel，as exhibited in the an nexed figures， 24 and 25 ，of which the first is a horizontal section，and the second（25） perspective view．A is the vertical shaft； C are the curved buckets；these buckets ar

arrower at the exit than inlet，as shown at ed．The water has free ingress on the face within，and rushes outwards to the circumfe－ rence through the curved openings，impelling the wheel in a contrary direction to that of the water－hence the term re－action．The perspective view shows two wheels placed on one shaft．A patent was granted to Luke C Hinman，L．Bissel，and Moses Barnea，of Ot sego，N．Y．，in Jure 11th，1811，for employ－ ing two wheels at once．With the patents previous to Parker＇s and Wings，we can aay nothing，but there is every reason to believe that the form of this double wheel was well known and in use，before the last war of 1812. In this perspective view，$A$ is the water fiume， or penstock；$S$ is the vertical shaft；$B$ is the feeding flume， $\mathrm{D} D$ are two water wheels； 1 ， 2， 3 are the buckets．The general and first opinions respecting this class of wheels was
wheels．As this wheel was driven by re－ac－ tion and the under－shot by direct action，it was philosophically set down，that as action no difference in the effect，although there might be in the price，and the convenience of the re－action over the under－shot．This was an easy way to philosophise，and，as a whole， they were set down by Elwood．Morriss，in 1833，as being only superior to undershot，for running in back water．In an experiment made by him，in that year，on a grist milldri－ ven by a re－action water－wheel，and published in the Franklin Journal，he states，＂the amount of water required was considerably larger than would have been needed by a breast－wheel to do the same work，and he was induced，upon the spot，to declare an opinion unfavorable to the economy of the re－action wheel under trial．＂He also staten，that，al though the proprietor was new－fangled with the wheel，yet he afterwards discarded it，and restored the old breast－wheel to favor and du－ ty．This wheel nearly resembled the one in the above fignre，and it took 1600 cubic feet of water，falling 1 foot per minute，for 60 mi nutes to grind and dress one bushel of wheat he found that an under－shot required only 1576 cuble feet of water to do the sume work These were the conclusions set forth by Mr Morris in 1842．They were condernnatory of American Re－action Wheels，consuming，ashe stated， 24 cubic feet of water more than an under－shot wheel，in grinding one bushel of wheat；yea，in one instance，it is stated tha they consumed nearly the double amuant of
water to produce the same effect，as an under water

The Lead Mines of Iowa
A correspondent of the Detroit Daily Adver tiser，writing from Dubuque，Iowa，under date of the 12th inst．，speaking of the lead mine near the city，says：－＇I would give you a description of one of the heaviest lodes that has ever been struck in the mining country The shaft enters a large cave，from twelve to fifteen feet high，and almost completely cov－ ered with mineral．There is one piece lying along the north wall，forty－eight feet long， and three feet square．On the north side，at saw．There is one of the fine body，in square blocks，eight or nine inches square．This cave is eighteen hundred feet long，but the mineral does not show in the entire length There is one more place which I must speak of．There are two sheets hanging down from the cap，about six feet ten or twelve inches thick，and sixty feet long．They are as white as anow．The cave is about fifteen feet wide， and，in most places，is completely covered bottom and top．I think we can take qut on thousand dollars worth a day，for twenty days in succession．＂

## stereoscopes．

Sir．David Brewster，invented a new instru ment about two years ago，of which the Abbe Moigno（the author of a good work on the tel egraph）thus speaks in an article in La Presse．
＂In his last journey to Paris，Sir David Brewster entrusted a model of his stereoscope to M．Jules Duboscq，a son in－law and succes－ sor of M．Soliel，and whose intelligence，acti－ vity，and affability will add to the already high reputation of the distinguished workman in the Rue de L＇Odeon，No．35．X．Jules Duboscq has set himself to work on the stere－ scope with indefatigable ardour：without re－ quiring the aid of a binocular camera，and by means of the ordinary daguerreotype appara－ tus，he has produced a great number of dissi－ milar（binocular）pictures，of statues，bas－re－ liefs，\＆c．，\＆c．

His stereoscopes are constructed with more elegance，and evan with greater perfection， than the original English ones；and while he is showing their almost miraculous effects to natural philosophers and amateurs who have already flocked to him in crowds，they are wit－ nessed with a spontaneous and unanimous urst of adıniration．
A number of these instruments are now be－ ing constructed in Scotland，but have not ye been introduced into America．

Durabilty of Vellum．
There are，in some of the public libraries o Europe，bookscomposed of vellum，upwards of thousand years old，which give no evidence of decay，and which may，unless destroyed by some accident，withstand the ravages of time for another thousand years with equal freedom from decay．Whatever might have been the process employed in preparing vellum during the earlier ages，it is certain，to say the least， that it has not since been improved．The ink of that period，too，is less liable to fade or decay．

## LITERARY NOTICES．

Thomson＇s Mercantile and Professional Direotory for the States of Delamare，Maryland，Virginia，North
Carolina，and the District of Columbia，－containe the name，location，post office addre sa，and style of bu－ siness of aill mercantile girms，manulaoturing estab
lishments，attorneys，physioiana，bankera，hotel keop


 the character of whioh is given above．It has been
compiled with great care and expense，and the pub
lisher deaerves suocess．We doutt not but that the lisher deser ves suooess．We doubt not but that the
Fork will have an immense asie，ase it ahould，among ur business community．Price \＄2．
The International Magazine，fớ February，contain a sterling variety of literary matter，original and se－
lected，vesides a portrait of Thomas Chatterton，and beveral scenes connected with his career．The ao－
companyinartiole iin highly interesting and inatruc．
tive．This Magazine is one of the firat in the world， and deser ves a wide oirculation．Publishod by Brting，
er \＆Towneend，at $\$ 3$ per annum．Single number ${ }_{2} 20$ oents．
The February number of Sartain＇s Magazine is
moat beautifuly
 ongravings．The oontributions are thirty－five in
number，Irom our most tblo literary characters，an
 rangement ut this serial is highly oreditable to the
publishers，and deserves a liberal patronage from
American ladies，to whose interests it is mainly de voted．
The February number of Harper＇s New Monthly
Magazine containe Oliver Goldsmith＇s oelebrated po－ em，＂The Traveller，＂，illuatrated superbly by olever
soenes，admirably drawn，to correapond with the de soription．This foaturr in the Now Magazine is most
exoellent，and we truat the enterprizing publisher
 ngenuine interest and merit，this number is superb， Prioe 25 oents per mangle number；Harper \＆Brother blishera，\＆2Clif at．
No． 5 of＂＂ 2 ＇he Daguerrean Journal，＇＂by S．D．Hum hrey Ne is reoived，and contans 日iveral value ublished aemi－monthly at $\$ 3$ per annum

## MECHAMIGS

INVENTORS

## MANUFACTURGRS．

The Best Mechanical Paper in the world sixth volume of the
SCIENTIFIC AMERICAN．

 the country to require a detailed acoount of the va
rious aubjeote disoureed through its oolumne．
It enjoye a more extensive and influential oiroula It en joye a more extensive and influential oiroula
tion than any other journal of ite olass in America．





it also poaseses an original feature not found in
an othe wekely journal in the country，viz．，an

 Publichers of the Soientifice Amerioh，
128 Fulton atreet，Ne York．
inducements for clubbing．

 Southern and Western Monoy taken at par for subsoriptions
ull value．

Any peraon sending usthree eubscribers will be en－
titled to a oopy of the＂History of Propeller and



