wards its areotion $\$ 248,000$ (nearly half a million) here been paid out of the Patent Fund-tbe money paid in by inventors, and did not coet the rest of our citizons a single cent. Is it not a high-handed reckleseness, then, to moral principles, in asing and abusing the Patent Office, for any other pur poses tha those for which it was originally designed?

15 Reported expresely for the Scientifo Ameriean, from the Patent OffioefReoords. Patenteos mill find it for their intorost to have their invontions il lustrated in the Soientifio Δ merican, as it has by far Amorica, and is the only source to whioh the pub. lio are soonntomed to refer for the lateot improve ments. No oharge is made ex copt for the execution of the engravings, whioh belong to the patentee af ter publioation.

LIST OF PATENT CLAIMS

Turued from the Dilted States Patent office. for the weet ending january $22,1851$. To A. W. Thompson, of Philadelphia, Pa, for im roved Propeller
I claim propeller constructed as herein described, in such a manner that any one of it bledes, in any line, drawn either parallel or perpendsoular to ite entering edge, shall have the curvisture of a parabela produced, as here in set forth.
To Jacob Schertlin, of Louisville, Ky., for improve ment in Briok Presse
I claim, firot, in combination with the clay ducts and connectiug carriage of mould, the rode with trair kuives, (for the purpose of cut ting off and foregin in to the moulds the re gular quantity of clay,) and sliding plate or gate, for the purpose of opening and closing the communication between the clay duct and moulds, as herein described.
Second, I claim the arrangement of the pine conneotiug rod, and atandard, with ita arm for the purpose of removing the brick after it ie raised from the moulde, when the same ar operated by means of the cranke, as herein described and shown.
To G. Thatcher, of Albany, N: Y., for improvemen in Stoves.
I do not claim the device of sliding doors between parallel jambs or plates, for the pur pose of consealing the same; but I claim pro viding sliding doors with flanges on their ver tical edges, the rear flanges serving the pur pose of hinges in opening and closing the same; and also serving to form air-tigh tjoint when the doors are closed. And the fron flanges serving in connection with the projec ting ends of side plates, to relieve the appear ance of a joint, when the doors are opened, a before described.

I also claim the providing of the side plates with projecting front plates, for the purpose of formiog fronts to the spaces into which the doors ere slid when open, to conceal the same, and in connection with the rear flanges, to form the hinges of the doors, when closing the same; and also to conceal a portion of the front flanges when the doors are opened and slid back, as described
To E. T. Partier, of Berkley, Ale., forimprovemen Convertible Plow Stock
I claim constructing a sub-soil plow with removable mould board and cutter, in combi nation with the tri-pronged cultivating teeth that the same stock may be used either for a sub-soil plow, or for common plowing and cultivating land, as herein set forth.
To Charles Starr, of New York, N. Y, for im
I claim forming circular embossing gildin or lettering tools of any required pattern, for embossing, gilding, and lettering book covers, by having a case or hollow metal cylinder fitting on a roller, and having an opening o openings in it, of any required form, for a pa nel or other border, the part of the periphery of the roller within the opening or openings in the case, having any required number of amall the case, having any required number of amall
tools, of any suitable form or pattern, secured
to it, the surfaces of the said tools standing even with the onter face of the case or cylin der, or by the employment of any number of tools, consisting of parte of a hollow cylinde secured to a solid cylinder, substantially in the manner described.
To A. A. Wilder, of Dotroit, Michigan, for impro Leoway Indicator.
I claim hanging the vane loose at the bot tom of the rod, which carries or communicate with the pointet, and holding it either in posi tion for operation, or secure within the vesse above the bottom of the keel, by means of spring or its equivalent, operating substantial ly as herein shown and for the purposes se forth.
[The above invention was illustrated an described in No. 8, present volume of the Sci Am.]
To Daniel Wilson, Jr., (assignor to D. Wilson, Jr H. M. Bird,) of North Cheimsford, Mass., for Hore Shoe Nail Machıne
I claim the aimple combination of the punch the slotted bed-die the heading die, the header slide, discharging orifioe and header, as arranged, constructed, and made to operate to gether, substantially as specified, or, in othe words, their arrangement and construction es sentially as explained, whereby they are mad to separate the nail blankfrom the rolled plat to move it downwards upon the header elide to cause the header slide to advance, in the meantime, to hold the nail blank, by means o the punch and header slide, to cause the head er slide to slide underneath the nail while is so held, to carry the header against the nai and head it, to cause the header slide to re tract or move backwards far enough to carry or move the discharging orifice directly unde the nail, and so that the nail may be forced down into or through such orifice, by the further depreesion of the punch which neart takee place, and finally to elevato the asid punch to the first or higheat position.
To J. G. Lamb, of Cesincinnati,
Stoves.
To S. W. Gibbs, of Albany, N. Y., (asignor to Design for Stoves.
To S. W. Gibbs, (ansignor to Ire Jagger, Wm. B Design for Cooking Stpves.

Shanghai and the Chinese.

The Chinese excel in the compactness of heir cooking apparatus, which consists of a erthenware stove, about the size of a flowe pot, in which they burn charcoal, and fan it very quickly into a red heat; by covering this ver with an ison thing, something like a dish cover, they bake pastry very nicely.
A bout Shanghai the country is very flat, and ges ago it must have been covered with wa ter. It appears to be going to decay for all the bridges and the joss houses, and the sta ues in them, are going to ruin. From the gen oral character of the Chinese just now, the appear hot to have two ideas, yet their build ings, tombs, and statues show them to have been a fine race, some time or other. It is pitiable to see their fine bridges and building going to ruin. The land is divided into larg fields of 40 or 50 acres by ditches, which ai avigablefor their small basts when the tid is in, and are used for irrigating the lands These fields are sub-divided by narrow pathe, and almost every family has a small quantity of land, on which they grow wheat, cotton and rice; and the surplus of any of these, afte they have taken what they require for their own use, is sold, and fire-wood generall bought with it. Fish is very sbundant, an the ditches attaabed to their property in great measure supply them. The oren do the heavy work in the fields, but the wome and girls assist at harvest time, and in packin otton.
They thrash with a flail, which is an im provement on ours. It has two fashes, which are connected by strings; they also have good winnowing machines. * * * They have a very nice gin for cleansing the seed of cotton, but not equal to the American ones. They pin and weave by hand. The cloth the mate is very good and atrong, but only abou
cloth is dyed blue; indeed that is the onl color used except drab, and white for mourn ing. They grow their own indigo. The cotton seeds, after cleaning the cotton, they feed sheep and goats with, and also grind or crush it, to extract oil from it, and feed the cattle with the remainder. They grind the whea with millstones, which are turned by a pon or Buffalo, and make very fine fiour

For the Scieritific Amerioan.

Mechanical Principles..-No.
I do not intend to occupy any more space in the columns of the Scientific American with this subject, than a few brief remarks in he present number. As a subject somewha bstract, it is not of much interest to the grea majority. My object was to present, clearly in as few words as possible, the outlines of the science ; and I will now conclude with ew words of advice to those who are in search of new things.
Before any man assunes to have discovered something new, he should inquire,-"do now-all that is already known on this subject?" We hear of this and thatallegedne discovery, and many such are made, but it i also true that a great many of them are no mprovements nor discoveries. Some men with a hardibood of no common kind, leap out with a discovery which, in their estimation, proves all the old philosophers to have been men of little capacity, and of less correc knowledge. This has been the case in tw nstances in the Scientific American. One who professed to have discovered a new prin ciple in mechanical philosophy, about inertia and the best form of sailing vessels; and the ther a totally different principle in inertia namely "gravity," and it was in answer to im that I commenced these articles. By a areful consideration of the works of Newton and Euler, it will be found that no new light has been elicited in Mechanical Philosophy.
In the construction of any machine, no ma can make it give out more power than it re ceives :-the steam is the power of an engine the water is that of a water wheel. That machine is most perfect which transmits the greatest amount of the real power, whether it be of water or steam. The readering more imple the various parts of a machme, so as to decrease friction, \&c., is a subject which should engage the attention of every mecha nic, because the field for improvement, in thi respect, is very extended-to save power, in all archines, is a grand desideratum. There are but few who have applied any philosophic im provement, like the "governor" to machinery -such inventions are rare
Various as are the modifications of machine here are only three objects to which their uti ity tends :-First, furnishing the means giving to the moving force, a good direction Second accommodating the velocity of the work to be performed in the most proper and conomical manner. Third, guiding the mo tive power to produce the greatest effect, so a not to throw any of it away. Now, to attain this knowledge, no mere theory will suffice experience alone is the teacher, but this expe rience must be linked with a good judgment and a knowledge of mechanical principlen, lse no improvement can be expected.

Maclaurin.

Fast Salling Ships.

The Britioh are beginning to awake to the importance of fast sailing ships, to compate with America. It is well known that Ameri can ships have taken the trade out of the hands of English houpes and that all the fine packet ships running butween New York and and Liverpool are built in America. The Liverpool Albion states that clipper built ships are beginning to be built and to supersede all others there,
It stater that in the year 1822 some spirited Scotchman located in Liverpool built in the town several vessels for the Charleston trade, called the Lalla Rookh, Marmion, \&c., which were superior in sailing qualities to any other then existing. They did not meet with encouragement, were afterwards sent out to Brazils, and were subsequently wrecked. Their preformances kept alive, however, some
with the Brazila, but it was not until the yea 1839 that the Columbus began her career of navigation between this port and Pernambuco She was built in London for a paddle-whee teamer, under the superintendence of Captain Daniel Green, and was intended to test the xperiment of working steam with quicksilver nstead of by the ordinary method. That experiment did not answer; she was converted into a sailing ship; and her performance in. duced the owners to build a kind of sister ship alled the Sword-fish commanded by a brothe of Captain Green, between whom there ha een a praiseworthy rivaly, and they have at imes run each other very hard, each having made passages of about twenty-two days to and from Pernambuco. Beyond tbis little notice was taken of the matter, except later on the building here of the Seraphina and Em. ress, to compete with the above vessels.Shipbuilders and merchants were wedded to Id ideas, and content to jog on in the oldashisned way.
To Aberdeen belongs the merit of carrying out a practical illustration of the advantages to be derived from building ships combining superior sailing qualities with great capacity or cargo, and it is hardly necessary to point to the Pilot-fish, the Bonita, the Reindeer, and Emperor, as reflecting infinite credit on the pirited parties who projected those vessels The system is now being generally adopted, harpened, as it must be, by free trade and competition with foreigners.

For the Soientifio American

In Vol. 6, page 53 of the Scientific American is an inquiry relative to the use of thick and thin belts; in the number succeding you alluded to it without giving a definite answer, -and in No. 18, E. M. Chaffee attempts to answer the question, but fails in correctness. E. M. C's result, from his experiment, is corect, and would apply were the driver and-driven pulleys of the same size, but when the sizes vary it is incorrect; for, supposing the one pulley was 48 inches diameter, and the other only 12 , the difference in speed, with an ertremely thin belt, would be precieely four times, because 12 is contained 4 times in 48 ; now if the belt is of sufficient thickness to in. crease the large pulley one inch in diameter, making it 49 inches, the same belt will in. crease the small one an inch, making it 13 inches, causing the small pulley to make only 3.779 revolutions to one of the large pulley. The large and small pulley must be increased or diminished, relatively, to keep the speed equal. Experiment has taught that ropes, belts, \&c., in coiling around cylinders or pulleys, stretch on the outer side, and contract on the inner-and the stretch being 2 , and the contraction 1-consequently, the point that neither stretches nor contracte, is one-third the thickness from the inside, and two-thirds from the outside of the rope or belt. If in the above illustration we wish to know how thick the belt must be to increase the diameters one inch, we find that it is increased half an inch on each side, and as that point of the belt that keeps its length must be half an inch from the surface of the pulley, by the above rule we see that the contraction is one, and the stretch two, and that the belt must be 3 half inches, or one and a half inch thick.
The rule for calculating speed by belts, accurately, is always to add to the diameter of the pulleys and drums, two-thirds the thickness of the belt or rope to be used in making the calculations, but in making the pullegs hey are to be $\frac{2}{3}$ thickness less in dimeneter
H. W. Bennett.

Kutland, Vt., Jan. 20, 1851

Engilsh Patents to Americans.

Edward Dunn, of New York, now residing in London, for an improved engine for produing motive power by theexpansion of alcoho. ic vapors. Patent dated Dec. 26, 1850.
John Ransom St. John, of New York, engineer, for improvements in the construction of compasses and apparatus for escertaining and egistering the velocity of ships through the water. Patent dated 27 th Dec. 1850. Thie a great invention. Mr. St. Johd is a reeldent of this city.

