Scientific American

NEW YORK, DECEMBER 14, 1850.

roduction of Cotton

There is no article of agricultural produce which engages so much attention, at present as cotton; and no wonder. The magnitude of the cotton trade, so far as a relationship with marufactures is concerned, dwaris every other. The stock, and production of American cotton, for five years, from January, 1845, was $14,150,000$ bales. The stock consumed in that period was $14,812,000$ bales, thus showing that the consumption was greater
than the supply. A recent number of the Alabama Planter contains a circular, by Mr G. G. Henry, factor, wherein it is stated, that although the cotton crop of 1849-50 was below that of 1848 , yet it sold for $\$ 30,000,000$ more. Does not this show the magnitude of the cotton trade? He states that if the consumption of cotton goes on for the next flve years in proportion as it has done for the past, there wuuld be a deficit of supply amounting to $2,300,000$ bales. The consumption in Americs will not be as great this year as last, by one-third the number of bales, at least; but, then, what signifies our consumption in comparison with that of Great Britain? We run over $2,000,000$ spindles, England more than $17,000,000$; and she paid $\$ 71,440,975$ for the raw material, last year. It is long since the manufacturers of Great Britain began to try and rid themselves of dependence on America for a supply of cotton but, as yet, they have not been able to do so successfully. At present there is more excitement than there ever was before, in respect to seeking other sources of supply; and they have turned their eyes towards the West Indies. A report has been published, of a meeting held in the Jamaica Bank, Kingston, where the question of the profitable culture of Jamaica cotton was discussed, and from the tone of it, we are confident that cotton cannot be cultivated profitably in Jamaica. The planters cannotget laborers to cultivate the crop, as one reason, and another is, it requires more cultivation to keep down the weeds than it does in any of our States.
For a long time great efforts have been made by the East India Company to cultivate cotton in that fertile region. American cotton agriculturists and American machinery were taken out there at great expense, and for many years, effort after effort has been made to increase the supply and improve the quality of Indian cotton, so as to compete with trat of the United States ; but all has been in vain. At a recent meeting of the Manchester Chamher of Commerce, the chairman, Mr. Thomas Bazley, stated that they were paralyzed for the want of cotton-that they were dependent upon one source, America, and that they were incurring a cost of ten millions sterling moré, at the present time, than they should pay for the raw material, and he advised the meeting to look to the East Indies for supplying their future wants. Before India can raise cotton to supply England, the cotton lords of Manchester and Glasgow have a work to perform almost equal to transporting the Himmalaya mountains in ship-loads to the Mersey. The whole polity of the country, in taxes, customs, building of docks, deepening rivers, making railroads, and making the natives honest traders into the bargain, have all to be accomplished before the East Indies can be rendered a cotton producing country, ,to compete with America ; and, during the time this refurm is working out, will Arnerica be standing still? No: she will be shooting still further ahead. The article on Georgia Railroads, on another page, will show what energy and enterprise is now displayed by the cotton growing States, in the way of internal innprovements, the developement of their natural resources, to facilitate transit, and thereby encourage the cultivation of cotton up in the interior, where, without railroads, the culture of it would be unprofitable. It is our opinion that our cotton cultivators have but precious ittle to fear from the East Indies. The na-
drels that they cannot be trusted in the least It is not long since that 8,500 bags were seized because adulterated with foreign matter, and the parties who were guilty, confessed that th crime, although penal, was a regular, long continued system. The British merchants will never be able to make much out of such men until they become christianized.
The only apparently reasonable offset to decrease the consumption of cotton, is the ma nufacture of more linen. If flax could be cul tivated, and as easily manufactured as cotton then it would supersede it, in a great mea sure; but it never can be: the separation of the woody from the fibrous parts of flax will always be an expensive operation. The cot ton culture has nothing to fear from the linen nothing. The linen trade was the great trade seventy years ago; America had not then ex ported her first cotton bale. The increase o the cotton trade has been a natural result, it has overshadowed the linen in importance, and we carnot divine a reason why it should not and must stili -corftinue to be the great staple production for manufacturing purposes.

Agricultural Chemistry

Plants contain various chemical substances. By burning a plant we find in the residue an ash, which contains a certain class of plant constituents-while another class escapes in the form of gas. The first is the mineral constituent, the second the organic; the latter contains only four substances, viz., carbon, hydrogen, nitrogen, and oxygen. The forme phoric acids, alum, magnesia, potash, and sophoric acids, alum, magnesia, potash, and so
da. Without these substances the plant could not flourish, and just in proportion as they are applied, so is the plant luxuriant. The inorganic constituents can have but one source, and that source the soil in which the plant grows. It is different, however, with the organic constituents, which have two sources drawn from the surrounding atmosphere. The atmosphere is the great reservoir of the organic constituents of plants. Two of them, nitrogen and oxgygen, exist in large, while the others, carbon and hydrogen, exist in small proportions. It must be understood, however, that all soils also contain a certain quantity of organic matter, which contain the same constituents, and are in many instances very important sources of those substances which form the food of plants. It is not enough that these substances should be in the soil; it is necessary that they should be in a state available to the growth of the plant, viz., in a soluble condition. The necessary constituents become soluble very slowly, and just in sufficient quantity to support that degree of vegetation which the economy of nature requires. Manure should contain all the substances in the exact proportion required by the plant, so that no waste might occur. It has,
as yet, been impossible to carry out, practically, what is true theoretically. Theory and experiment have shown that the whole constituents of manure are not equally important. Nitrogen has been found to bo the most important constituent of manure, because it is not so plenty as the others. It is true that the atmosphere contains great quantities of nitrogen, but then the plant also requires it most. In 100 lbs . of atmosphere there are 77 lbs., of nitrogen, but not more than $\frac{1}{4}$ of am-monia-hence the great source of ammonia, the right food for the plant, is the decomposition of animal and vegetable substances. In the management of the farm-yard, there should be two objects kept in view, to wit, the produce of the greatest amount of nitrogen, and the conversion of it into ammonia. The principal source of the two important constituents of plants comes from plants themselves, and that which is obtained from animals, comes from the plants on which the animals bave been fed. It is a very important matter to seep manure free from air and moisture. The mar.ure heap of every barn-yard should be vered by a roof.
To produce ammonia quickly, the manure should be heaped up, while it is produced
more slowly when the fresh manure is plowed in the soil. By a knowledge of this, farmers
they choose. Every farmer should depend on his own barn-yard for his fertilizers, and to produce these in the greatest abundance, and the least expense, should engage his atten tion. The production of ammonia, as shown is the grand obje and this is formed by heaping up and fermenting animal and vegetab substances. To preserve the manure unde roof is to save what has been already formed and it is far cheaper to do this by covering in han using gypsuin without covering in. The owing to the expense of covering them in; and another fact, in connection with this, is the want of a true knowledge respecting the va lue and the nature of the manure. As nitro gen is the prime plant-constituent to be provided artificially, and as ammonia must be served up as the food of the plant, and as this is very volatile-a test for showing what far mer is more enlightened than another, is his arn-yard.
In the last number of the "Rural New Yoiker" there is an article entitled "Shade as a Manure," wherein it is stated that a correspondent of the "Plow, Loom, and Anvil" has advanced a new theory, that " the excrements of animals is not manure; that the residue of putrefaction is the aliment of plants." Neith er Mr. Skinner nor Mr. Moore, we believe, en tertain any idea of the novelty of this doc trine. It is wrong, in one sense, and right in another, as every man who has studied agricultural chemistry knows. The great difficulty, with some, in studying cause and effect, is, they don't dig deep enough. By what w have set forth above, it will be seen that the residue of this putrefaction is ammonia. Pu trefaction is only the common name for the chemical fermentation. It is all nonsense t say that shade is a fertilizer, as has been se forth. Soil may be shaded for twenty years and not become any more fertile, if there is not some means provided for the production of ammonia, and its absorption in the soil. The summer fallowing of land tends to the produc tion of this food for plants, by the soil absorp tion of nitrogen, and the decomposition of ve getable or animal products.

War about Geometry.

Mr. Seba Smith, of this city, has recently written a new work on Geometry, termed "New Elements in Geometry." The nature of what is held forth to be new is, that al measurements in geometry are made of cubes Here is some of it :-
"She never attempts to measure something with nothing, whatever vain imaginations have been indulged hitherto by her votaries. Her magic wand, by which she performs so many wonderful works, is not an ideal line without breadth, but a positive magnitude; by which I mean a magnitude having extension in every direction from its centre. That magnitude is always a simple cubc, and nothing else. The cubs is her unit, and she uses but one unit in all her measurements. If you ask her to measure simply a line or length, say the length of your parlor, she will inquire by what standard it shall be measured, or what shall be the unit? If you tell her a foot, she takes her cubic foot in her hand, and applies its length, or linear edge, along the distance re quired, and tells you how many times the length of her unit must be repeated to make the length of your parlor. Again; if you ask her to measure extension in two directions, length and breadth, say the area of your parlor floor, and to return the account in feet, she takes her unit, the cubic foot, and applies its length and breadth, or one face, a \&ufficient
number of times to cover the floor, and tells you how many square feet it contains. If you ask her how much space or extension there is
in the whole room, she then applies the whole unit, and fills up the room with cubic feet and tells you how many it holds. And thus he measures everything, always with that mple square block."
This book has caused a flave up among some old mathematicians, who have an idea that something can be measured from nothing, and found their premises upon geometrical nomenclature, not the true idea they have of their
nature-such as "a point is aaid to have posi
ion without magnitude, and a line has lengt without breadth or thickness-or is a succes sion of points; but Mr. Smith is backed up by somewhat old authority, and if the subject be correctly understood, his "new element" is not altogether new. In Davison's Repository as we learn by the London Mechanics' Maga zine, Nov. 9, Question 62, Mr. Lowery ob serves, "that an infinitely small quantily, ta ken an infinite number of times, is equal to a finite quantity, and it is upon this principle that the whole science of Geometry rests; for a line is made up of an infinite number of points, infinitely small; a plane is made up n infinite number of lines, infinitely narrow and a solid is made up of an infinite number of planes, infinitely thin-consequently, an infinite small quantity, taken an infinite num ber of times, is equal to a finite quantity. There now, let our fighting geometricians, heath thir awords; Mr. Smith' ${ }^{\text {adea }}$ about a unit is the same as that taught by Prof. Davies, in his Logic of Matifematics.

Nature of a Patent Right.

The true nature of a patent right is best understood, and, indeed, can only be truly un derstood, by attentively considering the claim ants of inventions which are indisputably pa entable. Examine, for instance, the inven tion of Kneller, for an improvement in the manufacture of sugar, by introducing air-pipes into vessels containing syrup, and thus quick ening the process, upon the principle that eva poration is promoted by a current of air. If we analyze this invention, of what do we fin that it consists?
The process of evaporating syrup was the subject matter upon which the inventive power of Kneller was employed. The process which he undertook to improve, had long pre viously been the property of the public. This old process, therefore, was no part of Kneller's invention. But further, the natural law tha current of air promotes evaporation, was ap plied by Kneller to the process in question, by means of introducing pipes into vessels containing syrups. Suppose I should have employed some other mode of introducing aircur rents to the syrup, without effecting thereby any material improvement. In so doing I should have infringed upon Kneller's patentfor merely formal changes of an apparatus, do not constitute a distinct invention; hence, it follows, that the peculiar mode in which Knel ler introduced his pipes into the syrup, was not a material part of his invention,-and in or der to ascertain in what the invention of Knel ler intrinsically consisted, we must exclude from consideration the feature alluded t_{0},that a current of air promotes evaporatien was a well-known law. The question recurs, -what was the essence, the spirit, of this in vention of Kueller? It was this: the appli cation of a natural law, by practical means, to effect a certain result.
Kneller's patent protected both his own mode of applying the natural law in question, and also all merely equivalent means of ap plying such laws.
But, it may be asked "if Kneller's invention be irrespective of form, and founded on a natural law, does he not monopolise an ab stract principle, which is, and forever ought to be, the property of all mankind ?"
By no means; Kneller only monopolized the application of a natural law to the production of a certain result, by a certain class of means. In other words, his invention was a principle cmbodied in practice. And such is the distinc tive character of the great mass of patent rights. Watt.

Another Steamboat Explosion.

The steamboat A. Douglass exploded her boiler, at Tate's Shoals, on the Mississippi River, on the night of the 26 th ult. It is supposed that 40 or 50 persons have lost their lives, as all the passengers were asleep at the time When will such crimes be punished, as they deserve, in our country?
Within the last ten years, says the London Chronicle, 150,000 Mormons have emigrated from Great Britain to the United States, most the Northen of some means, from Wales and

15 Reported expressly for the Scientifio Ameri－
can，from the Patent Office Records．
LIST OF PATENT CLAIMS
rosued from the United States Patent Office for the week ending november 27,1850 To Smith Beers，of Naugatuck，Conn．，for impr I claim the mode herein described，of cha ing the position of the ratchet，by means of the arrangement of the sliding rod，knee，lev er，lifting plate，and pawl．
To H J．Betjemann of Cincinnati，Ohio，for im－ proven
tises．
I claim，first，the rotating eutters，（five） formed and arranged substantially as descri－ bed，with conical heads and cylindrical necks， in combination with a rest or movable table， for the reception and attachment of the bed－ post，the said table，while being advanced to warda the cutters，being conducted by suitable guides（three）as described，either upon the moving table or the stationary bench，in a course which is at first at right－angles to the face of the post，and thence，as soon as the cylindrical cutter has begun to act in a longi－ tudinal course，receding sufficiently＇from the face of the post to form a mortise which shal bind the dovetailed tenons of the rail，as they are pressed down in their sockets．
Second，I claim，in combination with the aforesaid guides，the stops，substantially as here arranged and applied，or their equivalents， whereby the table is liraited in its course to the particular range of cutting action re－ quired for the time being．
To Joseph Dilks，of Philadelphia，Pa．，for improve
ment in the Alarm and Indicator for Steam Boilers ment in the Alarm and Indicator for Steam Boilers， I claim the peculiar method of moving the indicator by its attachment to the side valve of the whistles，by which the connection is continued through the head of the boiler，as herein described，dispensing with the stuffing． box and packing．
To W．H．Horton，of Newburyport，Mase．，for im proved arrangement of the bending rollers in tin cut ting and bending machines．
I claim to so combine and arrange the roll－ ers，with respect to the jaws，as specified，so as to enable the said roller to be operated in the manner substantially as set forth；that is to say，to be moved in a plane parallel to the common axes of the shafts，the said roller be－ ing arranged in a turning frame and supported by a movable and adjusting frame；and the object of my improvement being to enable a person to move the roller against the tin in the manner and for the pur pose of binding it down， substantially as hereinbefore explained．
To Wm．Kelly，of Eddyville，for improve
the Metallic Flask for oasting large Kattles．
the Metallic Flask for oasting large Kettles．
I claim the elastic iron core，supporter，or inner part of the flask，constructed of wings attached to the crown，and provided with cov ering stripy，substantially as described．
To Orville Mather，of Cincinnati，Ohio，for improve
I claim，first，constructing a cylindrically rotating cutter head，with a separating joint athwart its middle，and in the plane of its ro－ tation，so arranged as that，by the mutual ad－ vance or recession（in the direction of their axis of rotation）of the respective sections of tho cutter heads，as they traverse the length of the stuff，the cutting edges are adapted to impart the varying outline and form required for the work．
Second，the shafts and weighted levers，in combination with other levers，and the links， or their equivalents，for sustaining in position the tongues upon the spoke，and the rollers upon the guides，and rendering them self－ad justable under all the circumstances which can affect them．
To Melville Otis，of East Bridgewater，Mass．，for
improved Nail Plate Feeder and Turner．
claim，first，giving the alternating motion
to the nipper rod，by means of a pair of jaw actuated by the opposite ends of a vibrating beam，one of the jaws being provided with spring and toggle，which causes it to grasp and release the nipper rod，the whole operating substantially as described．
Second，I claim giving to the said rod ity progressive advancing and slightly retrograde motions，by means of a pair of jaws actuated by a cam and an eccentric
substantially as specified．
Third，I claim operating the follower，so that it is raised from the nail plate，and the nail plate from the lower cutting jaw of the machine，by means of a cam，a rock shaft， and a radius bar connected to one end of the follower，substantially as described．
Lastly，I claim transmitting the motion from the nail machine，by means of a lever beam and connecting rods，when the lever beam is hung upon a cranked centre，and the actuating connecting rod is provided with a knob acting upon a flat crank pin，substantial ly as described，whereby I am enabled，with facility，to throw my feeding machinery in and out of gear．
But I do not intend，hereby，to confine my self to the particular forms and proportion herein described，provided I construct a ma chine substantially the same．
To Harvey W．Sabin，of Canandaigua，N．Y．，for
I claim，in my improved horse－rake，the de－ vice for raising the teeth，substantially to clea them of the hay，and dropping them again，by means of the apparatus，substantially as de－ scribed，being worked by the draught of the team，when thrown into gear，at the will of the operator．
To Elisha Steele，of Waterbury，Conn．，for im
I claim the conarnction of
I claim the construction of the buckle frame and attaching the tongue or points thereto，so that the tongue or points slide out or into the buckle，instead of acting upon a hinge or roll－ er，as above described．
To Augustus Thayer，of Melden Bridge，N．Y．，for improved Auger Handle．
I claim the construction of auger handles， substantially as set forth，that is，by making the principal part of the same，from end to end，of one piece of wood，or other material， securing the central purtion through which the auger shank passes，with a metal band，and arranging a detent for holding the shank with machinery to operate it ；the said handles be ing for use with augers，or any other tools t which it may be adapted．
To J．T．Trotter，of New York，N．Y．，for improve ment in Vulcanizing Iadia Rubber．
I claim the use andemployment of zinc pre－ pared by the process described，whereby a hy posulphite，or similar preparation of zinc，is obtained，in combining with india rubber，fo the purpose of curing or vulcanizing it，sub－ stantially as hereinbefore set forth，withou the use of free sulphur in any way，in combi－ nation with the rubber．

re－issues．

To Charles Davenport \＆c Albert Bridges，of Cam－
bridgeport，Mass．，for improvement in the manner or constructing Railroad Carriages，so as to ease the lateral motion of the bodies thereof．First patented May 4th， 1841.
We claim connecting the said turning bear ing to the truck frame of the above described kind，resting on four wheels or more，by a me－ chanism，substantially such as described，that shall not only allow such turning bearing in－ dependently of the wheels and axles a lateral play movement or movements，in direction transversely of the carriage，but bring or move deflective force has ceased to act．
designs．
To Samuel Pierce of Troy，N．Y．，（absignor Jollnson Cox \＆Fuller，）designfor Stoves．

Cotton Spindles of the World．

The London Examiner gives the following tables as an estimate of the number of spindles engaged in the cotton manufactory through out the world：－Great Britian， $17,500,000$ France，4，300，000；United States，2，500，000 Zollverein States，815，000；Russia，700，000 Switzerland， 650,000 ；Belgium，420，000 Spain，300，000；Italy，300，000．Total，28， 585,000 ．

Gravitation－What it is．
Under this heading，a writer（W．K．）in last week＇s Scientific American，puts forth some deas，which are incorrect and contradictory He says－
＂Gravitation is that property of matter by which it resists a change of state，with res pect to motion or rest．This will，no doubt， e considered a sweeping declaration．＂\＆cc It is a sweeping declaration，but only a decla ration．If he had used the word inertia in stead of＂gravitation，＂he would have given us，word for word，the very proposition of Newton，as relating to vis insita；the only difference between the two is，that Newton is nearly right，while W．K．is the very opposite If gravitation is that law which resists change of state，as set forth above，it is ver easy to prove it．It is just this－every body nce in motion，must forever continue in mo ion；a ball，shot from a rifle，will forever ontinue fleeting through space．It is in mo－ ion，you see，therefore it will resist a chang state to rest．Now，how is it that a ball， shot from a rifle，is brought to a state of rest？
We can easily understand how it gets motion， or，in other words，has changed its state rest，viz．，by the impact of a superior force but，then，no powder，no human hand touches it while fleeting through the heavens；and how does it come to a state of rest？Take way the known law of gravitation－that principle of attraction in all bodies－and \mathbf{w} annot explain it ；but with it wecan explain the phenomenon．By the laws of Inertia and Gravitation，we can explain all the deflections， all the motions，and the forms of moving bo dies，but not by the declaration above．The whole of the reasoning，to prove his proposi tion，is inappropriate．I cannot see how it pplies to，or dovetails with，his text．In－ tead of proving his proposition，his exposi tion relates wholly to the composition of for es，an entirely different subject．One of th most singular ideas set forth by him is this－
＂If this is the true philosophy of gravita tion，then we are at once introduced to th true reason why its force is always in pro portion to the quantity of matter．When w ift a stone from the earth，we separate two bodies，containing a vast amount of matter or which reason we experience a great oppo ition．When the stone is small，it leave the eurth to move only a small distance，it is true，but as all motion is mutual，and propor tional to the two bodies themselves，the earth must，upon the lifting of the stone，recede he proportion．When we double the volume of the stone to be raised，then，although the quantity of matter contained in both is the ame，yet because the earth，the greater of th wo，is obliged to recede twice the distance we experience twice the difficulty in raising it we therefore say，the stone has twice the weight of the former．＂
Now，sir，this is not correct ：force is not always in proportion to the quantity of mat ter．Laboring force embraces weight，or gra vity，and velocity．One body having just hal he quantity of matter as another，may hav the same amount of force，yea，ten times th mount．Aball，weighing one ounce，has a much force as one weighidg a pound，if the ame quantity of powder is used to prope each．
is droll．
He forgets that there are properties belong ing to matter which are named magnitude an density，and these properties must be consider ed apart from distance or space．One pound moved through 100 feet of space，in one se－ cond，has as much force as 60 lbs．moved through space at a velocity of 100 feet per minute．About lifting the stone，and the re ceding of the earth，is very amusing，as it seems that，doubling the volume of stone，the quantity of matter is not increased；that is， there is just the same quantity of matter in one pound of sugar that there is in two ：－W． K．＇s wife，if he has one，could never become believer in this doctrine．A pair of scales cculd easily convince him that he is in error The most singular announcement which he makes，is as follows
＂We can move a weight，not only abou
perpendicular direction，but even ten，fifty，or a hundred times as great．The reason is plain，there being no separation of bodies， there can be no reaction in a direction towards each other，－the force，therefure hrown upon the body is constant，and al hough we can scarcely see the effect at first et，as the force is every instant accumulating herefore，by continued pressure，we can move much greater body in a horizontal than in a perpendicular direction．＂
There，engineers，don＇t you see that a hori－ zontal is a hundred times more powerful than vertical engine．This，however，is not the ceaning of W．K．，but it shows how he con fuses subjects－he has not a clear understand ing of them．The fact is，direction of motion has nothing to do with the sulject；there is no difference in the force of one body from ano ther，if both have the same momentum－let them be moving in any direction，horizontal or perpendicular．I was sorry to see such an dea advanced as the following：－＂The ele－ ments of matter are unoriginatell，hence they have already passed through an infinite num er of modifications，in which every particle of matter has been associated with every other particle，from which it has since been projec ted．＂He deduces the above from the laws of ction and re－action．He might just as well have said，that he himself was not originated， because there is an inherent principle of self preservation within his breast．How he ace－ counts for matter passing through various mo－ difications，the association of particles，and then their separation，is a problem ；such events could never happen，if his theory was true； ever．
It is not long since that a writer in the Sci－ entific American discovercd the same law as W．K．，giving it another name，but he was going to make vessels cross the Atlantic in a few days by it．
The laws of Mechanics are not generally nor well understood．With your permission， gentlemen，I will pursue the subject in some subsequent articles．Maclaurin． The Cotton Worm．
Messrs．Editors－In No．4，page 27，of the present volume of the Scientific American，is an article under the head of＂Cotton Worm，＂ which speaks of a destructive insect，a $f l y$ ， resembling the＂Candle Fly．＂In my re－ searchss in entomology I never came acruss an animal of such a denomitation；no doubt the misnamed insect is a Papilio，Noctua Gos－ sypii，a native of South America，blown to our Southern States when in the winged state，and becomes destructive when，on its arrival，the cotton is in full bloom；if later，it is a wel－ come customer．So I found it in 1812，in South Carolina，where the cotton had ripened to pods，and nothing left forit but the leaver， on which it fed，by which means the planters reaped a cleaner crop，free from the small par－ ticles of the leaves．Fortunately，this insect cannotendure our climate，or else it would be－ come naturalized．The manner of destroying the fly，as stated by the writer，would rather be inefficient－examining the blossoms；what a labor！The quicker way would be to set the whole crop on fire，and is more sure than in－ viting these guests to a dish of molasses－a luxpy to bees，wasps，and hornets，but not to papilios，who only suck nectar from flowers． The only method our planters have tried，was to light fires near by，in calm nights，around the cotton fields，which attracts moths．
Savannah，Oct．20， $1860 . \quad$ A．G 0.
［The article referred to，in the above letter， was an extract from another paper，and credit－ ed to that paper．We did not endorse，nor make any comments on it．－E_{D} ．

Freshits．

It is our opinion that there have been more freshets in our country，this season，than any other within our recollection．Last week the village of Cleveland，Oswego Co．，was visited with a destructive freshet in the rising of Black Creek，which carried away five dams and two bridges．
The Toronto papers estimate the surplus wheat of Upper Canada this season at 7，000，－ 000 bushels more than last，which was $4,000,-$ 000 －making $11,000,000$ bushels．

