

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

HILGARD'S DESIGN FOR A STEEL ARCH BRIDGE AT MINNEAPOLIS.
The question as to which design of bridge shall be adopted to take the place of the present suspension bridge in Minneapolis is still pending between the city of Minneapolis and the Minneapolis Mill Co., a corporation which controls the greater part of the large water power of the Mississippi and the milling interests. The city proposed, and by act of the legislature was authorized, to construct a stone arch viaduct across the river above the Falls of St. Anthony, as the present suspension bridge has become insufficient to accommodate all the traffic on the principal thoroughfare between East Minneapolis and the business center of the city. The Minneapolis Mill Co., fearing detrimental effects which the sinking of the foundations and the presence of four stone piers in the river bed may have upon their interests, enjoined the city in time, and thus prevented her from proceeding in the construction of the bridge. Hereupon the city offered a compromise, proposing to upon the city offered a compromise, proposing to
substitute the stone arch viaduct by a steel arch substitute the stone arch viaduct by a steel arch
bridge of two deck spans of 260 feet each, with but one pier in the middle of the river. The Minneapolis Mill Co., however, in order not to lose any right to clain damage in the event of the one pier being built, still maintained the granted injunction, requesting that a bridge be built without any pier whatever in the river bed, and it pier whatever in the
seems that the question will have to be decided by court.
These circumstances gave origin to the design of the to the design of the one span steel arch bridge as proposed
by Mr. K. Emil Hilby Mr. K. Emil Hilgard, a civil engineer, until lately, of the St. Paul \& Northorn Pacific Railway Co., of Minneapolis. The plan was submitted to the Minneapolis Mill Co., and
has been favorably considered. The design is a splendid one, and we take pleasure in presenting it to our readers. The following particulars are from the Minneapolis Tribune.
The bridge across the river proper is 540 feet long, and intended to join and match the succession of short

GENERAL DIMENSIONS.
spans covering the Union Depot tracks at the west end. The intended width of the bridge is 80 feet from outside to outside, thus providing for two separate roadways in the center of the bridge, each 24 feet wide, and two separate sidewalks of 12 feet width in clear each one at each outside of the bridge. Each roadway to have a street car track, and to leave ample space besides for two large teams. One roadway is to space besides for two large teams. One roadway is to
serve for traffic in an easterly direction, the other for such in a westerly. The whole floor surface, by means of posts, floor beams, and secondary longitudinal girders, is partly supported by, but to the greater extent is suspended from, a set of four braced steel arched trusses, two of which are coupled between the two road ways, and the others to be placed between each roadway and the adjacent sidewalk, leaving thus the latter supported by the bracket end of the floor beam.
Between the two center trusses is room for a walk to be used by persons, cars, persons in repairing the gas or other mains. Under this walk is placed a frost proof conduit, in the shape of a square box, which is to receive all the water, gas, and insulated electric mains which will have to be carried across the river. This arrangement of trusses, as shown in a plan of the section of the bridge, wouldirender possible, should it prove desirable, the erection of one half of the full width of the bridge at first, alongside of the present suspension bridge, and of the other half after the removal of the latter, thus permitting the use of one sidewalk of 12 feet and one roadway of 24 feet in width while the suspension bridge is in use or being taken use or

The bridge, as pro-

posed by Mr. Hilgard, is in the greater part of the type termed "through bridge," which means that the head room above the passing teams is not unlimited. The unobstructed, clear head room varies from 16 feet toward the ends of the bridge, where the arch rises above the roadway, to upward of 25 feet in the center of the span. The arch proper is of the pin-connected type, and has a span of 520 feet from end pin to end pin. The ratio of rise to span is as one to ten. This ratio might easily be changed into a more "economical" one, as $1: 9$ or $1: 8$, without much changing the appear ance of the whole structure. The roadway, for the sake of appearance and drainage as well, is shown with a slight camber, amounting to five feet in the center. Thesteel arch proper is 16 feet high at the ends and 10 feet high in the center. As shown in plan of section, the construction of the floorsurface provides for pine block pavement of usual type for teams, and granite between and next adjoining the street car tracks. For the sidewalks cement plates are proposed, the latter, as well as the stone blocks, to be solidly embedded in sand and gravel. A thorough drainage of the whole bridge surface and under the pine blocks in particular is also designed, such as to make the bridge floor first-class and durable in every respect. It is proposed to light the bridge by means of a few chandeliers carrying electric globes.
The advantages claimed for the design are the following :
It dispenses with all and every foundation to be put in the river bed proper (which might or might not in volve a great many difficulties and expenses). A bridge of the kind Mr. Hilgard suggests will in no way interfere with the judiciously guarded interests of the Minneapolis water power, as it leaves the conditions of the river exactly as they are at present. It will make a solid and rigid structure, adapted to carrying the heaviest traffic that ever passed over a first-class city bridge. A bridge of any other system than the suspension or cantilever, and yet belonging to the type called deck bridge, while it would, if practical, have the advantage of an unlimited head room above the passing teams, is utterly impracticable, both from an engineer ing and from an æsthetic point of view, unless at least one pier is put in the river bed proper. A suspension bridge, as well as cantilever, ought to be avoided, from professional and financial reasons. The practically unavoidable necessity, incurred in the adoption of a through bridge, of having two separate roadways, has been emphasized; but this objection is at variance with what has been considered desirable, or even necessary, on the largest bridges in New York, St.
Louis, etc., where the traffic in each direction is confined to a separate part of the bridge.

New Method of Making Water Gas.

The Glasgow Engineer says that a new method of making water gas at an extremely low cost was the subject of a recent communication to the French Academy of Science, and that " the matter has caused much anxious attention, not only in France, but all over Europe and in England as well." It is of weighty importance, not only to gas but also to iron makers, if it accomplishes what is predicted of it. A jet of superheated steam is directed into a retort full of incandescent coke. The oxygen unites with carbon to form carbonic acid, and hydrogen is liberated. So far nothing new. The gases are led to a second retort filled with some refractory substance kept red hot, by which a glowing surface is exposed to the gases. At the same time, superheated steam is introduced. This seizes upon the carbonic oxide to form dioxide, and more hydrogen is liberated. A milk of lime bath removes the carbonic dioxide, and the pure hydrogen is led to a reservoir. One ton of coke in this process produces about 69,000 feet of gas, which is about eleven times the quantity usually produced by the expenditure of a ton of coal. This reduces the cost to little, if anything, more than that of natural gas, when the difficulty of controlling the latter is taken into the account. This is for heating purposes. Inventors are at work devising the best methods of carburetingit, and Boulogne-sur-Seine is to be lighted with it next winter.

The Relative Value of Natural Gas and Coal.
Of Pittsburg coal 55.4 pounds contain the same number of heat units as 1,000 cubic feet of natural gas. With coal at $\$ 1.20$ per ton, 1,000 feet of natural gas would then be worth $31 / 3$ cents. But by tests made by the Westinghouse Air Brake Company, $1 \cdot 18$ cubic feet of natural gas evaporated one pound of water from 190° Fah., with the same boiler under which one pound of the best coal evaporated 10.38 pounds of water. That is, one pound coal equals $12 \cdot 25$ cubic feet of gas, or 1,000 feet gas equal $81 \frac{39}{49}$ pounds coal. This difference results from the expenditure of heat necessary to raise solid fuel to the gaseous state, which must be done before combustion can take place. In a house grate the loss on this score from using coal would be more than in a large furnace of a factory. Hence, the greater economy in the use of natural gas is in houses and small establishments.

Serintific smmerican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIPIC AMERICAN.
Une copy, one year. postage included....
One copy, six months, postage included.
100
150
150
Clubs.-One extra copy of THE SCIENTIFIC AMFRICAN will be supplied
ratits for every club oftive subscribers at $\$ 3.00$ each; additional copies at
same proportionate rate. Postake prepaid.

The Scientific American Supplement is a distinct paper from the Scientipic Amprican. THE SUPPLEMENT

 will be sent for one year, postage free, on receipt of asven dopars. Both
papers to one address or difrerent adcresses as desired
rexe safest way to
rexistered letter. rexistered letter. $\&$ co., 861 Broadway, corner of Franklin Street, New York.

Scientific American Export Edition.

NEW YORK, SATURDAY, OCTOBER 23, 1886.

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT
NO. 564.
For the Week Ending October 23, 1886.
Price 10 cents. For sale by all newsdealere.
PAGB
much discussed question in dairy farming
mat....................... 9014 I. BOTANY.-Ornamental Grasses.-A description of a number of
species of different genera of this family of plant life.............. 9013

 GEOLOGY AND MINERALOGY.-On a Diamantiferous Perido-
Gite and the Genesis of the Diamond. -By Prof. H. CARVILL
LETIII. Interesting asociation of the diamond with distincty
eruptive rock and carbonaceous shale in South Africh
 II. METEOROLOGY.-Wind and Barometer.-ByH. ALLEN HAZEN.
-The efferto wind on the helightof the barometric column when
the latter is within a house discussed......................

principally from abroad, especially from Vermont and other New England States. Woolen fabrics are being used very extensively among the rich, and before long the same articles bid fair to become popular with the poorer people. The Japanese government and nation see that there is a fair field for starting woolen manufactures in their country; and, taking into consideration the imitative faculties of this people, and the low rate of wages at which they are content to work, they are likely soon to become proficient in manufacturing too, if they can get the wool, especially as they have shown themselves to be capable of using machinery and other aids to labor which twenty years ago were unknown to them. If wool could be imported, a great industry might be established. The wool of New Zealand and Australia is said to be more suitable than that grown in America for manufacturing cloth for Japan, on account of its greater fineness; and as this latter country has so many products, such as tea, sugar, and rice, all of which are marketable commodities in Australasia, the commercial relations between Japan and those colonies, it is thought, might be developed advantageously by a mutual exchange of produce.

Piston A rea and Heating Surface
However much change may be effected in the type of a locomotive, certain proportions appear to be incapable of alteration without doing harm ; $21 / 2$ square feet of heating surface ought to be provided for each square inch of piston area, or, what comes to the same thing, the area of one piston multiplied by 5 will give the proper heating surface. Thus, the area of a 17 inch piston is 227 square inches, and $227 \times 5=$ 1,135 square feet. An 18 inch cylinder has an area of $254 \cdot 4$ inches, and $254 \cdot 4 \times 5=1,272$. In like manner the proper surface for 19 inch cylinders is $1,41 \%$ square feet. Of course, this is not to be regarded as a hard and fast rule, but it will be found that it is quite in accord with the best locomotive practice of the day, and that when an attempt has been made to reduce the proportion, the engines have not proved good steamers with heavy the eng
trains.

