stem to stern; it is strongly arched in the atbwartship direc tion, having a curve of about 4 feet. At the middle line tbis deck is about 1 foot below water, at the sides it is about 5 feet below. It forms a roof or sbelter to the bold space situated below it, and in the space thus protected are placed the vitals of the ship-magazines, sbell rooms, engines, boilers. etc.
Minate water tight subdivision of the bold space below the protective deck, and of the space between it and the main deck, is effected by means of transverse and longitudinal bulkbeads and of borizontal flats or platforms. Magazines, shellrooms, etc., are also converted into separate water sight compartments. All openings in the protective deck are trunked up by water tight steel casings to the beight of tbe main deck, and surrounded by cellular coffer-dams, which can be packed with canvas, oakum, or other material which would readily check the inflow of water if, in action, the trunk casings were shot througb. Tbis coffer-dam protection resembles tbat long used by the Admiralty constructors in vessels of the central citadel type; and another feature in tbe Esmeralda in wbich Admiralty practice bas been imitated is in the use of cork, packed in cellular spaces, as a safeguard to ber buoyancy, stability, and trim in case tbe sides in tbe water line region should be riddled in action. The steel deck is intended to be cbiefly useful in protecting from sbell fire the vital parts situated below it, and tbis protection is greatly increased by the conversion of the spaces between the main and lower decks into coal bunkers.
She bas twin screw propellers driven by two independent sets of machinery. The engines are horizontal, and on the two-cylinder compound principle. The cylinders are 41 inches and 82 incbes in diameter, and the stroke is 36 inches.
The armament is exceptionally heavy and powerful for a sbip of such moderate size; and the mountings are of a very novel character, representing some of the latest products of the famous Elswick factory. It includes two 25 ton 10 inch breecl-loading guns, six 4 ton 6 inch breechloading guns; two rapid fire 6 pounders, of Captain Noble's design, and a number of macbine guns. Tbe 25 ton guns are mounted as bow and stern chasers, and bave an arc of training of about 240 degrees- $\mathbf{1 2 0}$ degrees on each side of the keel line. They are carried on central pivot mountings, and fire over a "glacis" formed by the ends of tbe upper deck. The engraving illustrates the nature of the mountings. On the rear of each slide is a strong steel screen, protecting the captain of the gun; and within tbe shelter of this screen are placed the bydraulicand other gear by wbicb the gun is trained, moved in or out, elevated, and depressed. Hydraulic mechanism, of Elswick design and manufacture, is employed for these beavy guns, and used for loading as well as working them. A very few men thus suffice, and these are well protected from rifle and machine gun fire.
One important feature in the arrangement is the strong steel loading station built in tbe rear of each gun. This is really a large steel bouse, within which are the upper ends of steel tubes, extending down to the magazines and sbell rooms. By means of hydraulic boists the projectiles and cartridges are lifted through tbe tubes into tbe loading stations, being sheltered in their transit.
Having reached the loading station, the gun is raid fore and aft, and run in on the slide, being elevated for the purpose of loading. After the breech piece bas been withdrawn, the projectile and powder cbarge are rammed bome; and throughout the operations the porvder is protected from rifles and machine guns. With large charges exceeding 2 cwt . of powder for the 10 inch guns, this is a matter of great importance. The penetrative power of these 10 inch guns is represented by 21 incbes of iron armor; and both of them can be fought on eitber broadside, as well as being used for chasers.
On eacb broadside there are also three 6 inch 80 pounders, carried on central pivot automatic carriages, and baving a horizontal range of training of about 130 degrees.
Tbe Esmeralda has also a very good auxiliary armament witb wbich to deal blows upon an enemy similar to those against wbich ber men are exceptionally well protected.
We are indebted to the E/"gineer and the Graphic for these particulars and for our illustrations.

White Bricks.

M. Hignette, in the Bulletin technologique des Ecoles nationales \boldsymbol{a}^{\prime} Arts et Metiers, describes a new ceramic product from the waste sands of glass factories, which often accumulate in immense quantities so as to occasion great embarrassment. The sand is subjected to an immense bydraulic pressure, and tben baked in furnaces at a bigh temperature, so as to produce blocks of various forms and dimensions, of a uniform wbite color, which are composed of almost pure silex. The crushing load is from 370 to 450 kilometers per square centimeter. The bricks, when plunged in cblorbydric and sulphuric acids, show no trace of alteration. Tbe product bas remarkable solidity and tenacity; it is unt affected by the beaviest frosts or by tbe action of sun or rain; it resists very bigb temperatures, provided no flux is present; it is very ligbt, its speciflc gravity being ouly 1.5 ; it is of a fine white color, which will make it sougbt for many architectural effects in combination with bricks or stones of other colors.

Workers in bleacheries where chborine is largely used from special ailments induced by inbaling that gas

Šrientific Ammorian.

ESTABLISHED 1815.
MUNN \& CO., Editors and Proprietors.
published weekly at
No. 361 BROADWAY, NEW YORK.
\qquad
O. D. MUNN.
A. E. Beach.

TELENS FOR THE SCIENTIFIC AMERICAN. One cong, one year posrake included....
One copy six months postage included
Clubs.-One extra cony of Tre Scientific Amerchen will be 16 ratis for every culu of five subscribers at $\$ 3.20$ each; additional copies a Remit
in postal order. Address
The Scientife American Supplement
is a distinct paper from the Scientific American. 'THE SUPYLEMEN'I with Scientipic american. Terms of subscription for Supplement 85.00 a year, postage paid, to subscribers. Single conies, 10 cents. Sold by all news dealers throughout the countrs.
Combinell lRates. - The Screnviric
Combinell lRates. - The Scientific American and SUPPlement
will be sent for one year postage free. on receipt ot seven dollars. Both
AMERICAN and SUPPLEMEN
receipt ot seven dollars. Bot) papers to one address or different addresses as desired. The sufest way to remit is by draft, postal order, or rekistered letter.

Scientife Amerlean Export Edition.
The Scrindific Amerioan Export Edition is a larke and splendid perilarge quirto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the Scin :Tific American, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading hovses.
Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any purt of the
world. Single copies 50 cents. Manufacturers and others who destre to secure foreign trade may have large. and handsomely displayed an nouncements published in this edition at a very moderate cost.
The Scisntific Aminican Export Edition has a large guarunteed circuCO., 361 Broadway, corner of Franklin street. New York

NEW YORK, SATURDAY, NOVEMBER 22, 1884.

TABLE OF CON'TENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT INO. 464,

For the Week ending November 22, 1884.
Price 10 cents. For sale by all newsdealers
I. CHEMISTRT, ETC.-Chemistry as Applied to Dentistry.-Paper read before the ill. State Dental society.-By W. H. TAGGerr.-
Physical and chemical changes.- ('hemical differences in remedes used by dentists.-Howto make oxyphosphates.
II. ENGINEERING AND MECHA NICS.-Launch of H. M. S. Rodney at Chatham. - With full page engraving....
Thirty inch Flexible Water Pipe Laid u -4 Thirty in

-4 figures

An Anclent Water Tunnel
Machines for Making Trles. - 4 engravings...........................
II. TECBNOLOGX.-The Manufacture of Crucible Cast Steel. - By HENRY SEEBOHM.-A paper recently read before the Steel and Iron Distillatio
parat us. -1 figure............................... .
What the Baker can get out of a Barrel of Flour.
The Nou-conducting Hood for Use in Cooking. gravinc...
IV. ELECTRICITY, ETC.-New Method of Renewing the Liquid of Secondary Plles. -2 engravings.
The Telephone Clatmed by Me

-2 figures

Electric Conveyers.-1s figures
Development of Electrictty in a Leather Clo........................ Agures
GEOLOGY, ETC.-The Anthracite Coal Fields of Papor read before the Engineers' Club of Philadennsyivaxia.Ashbvuner. - Geography. - History.-Topography geology - Straticraphical eooligy.-Composition and origin of
Pennsylvinia antinracite.-Mining.-Statistics of production. Pennsylvinia. anthracite.-Mining.-Statistics of production.VI. NATURAL HICTORY, ETC.-Treatment of Vines Infested with
the Phylioxera. - With engraving.

GRINDING REAMERS.

Every machinist knows the tendency of reamers to chatter and leave flutings. The most careful bandling could not always prevent it. For a remedy the scores or flutings of the reamers bave been made of uveven numbers, so that a space should oppose a tootb; and sometimes a "slashed" or spiral tooth bas been cut instead of a straigbt one. But no remedy bas beretofore been found that is so effectual as careful using and a very light scraping cbip.

In a large establisbment for the manufacture of band and machine tools, some experiments have been made with reamers with a result of nearly, if not entirely, removing this tendency to cbatter. Tbe remedy is in grinding the tlutes or teetb on tbeir face or cutting side, so that tbey present a sharper angle to the work, and cut rather than scrape.
After the reamer bas been fluted in the milling machine or the crank planer, and bardened and tempered, it is submitted to the action of a narrow, round-faced emery or corundum wheel, that cuts under the straigbt face of the flute and projects its bead forward, making a more cutting angle. Trials on very bard charcoaliron castings seem to prove the advantage of this after-grinding. Tbis test was proved on a bole for a taper fit. Tbe finished steel pin was placed in be reamed bole, and driven to seat by a Babbitt metal banmer. Wben driven back there was not a mark of the reamer's work, although the pin liad been oiled to show the marks if any there were. Lampblacking the reamed liole and tben driving or pushing in a plug of wood turned and covered witb white paper gave. a clear smut without any corrugations. In use the reamer cut so freely that no forcing was necessary.

WHAT THE DOCTORS SAY ABOUT BICYCLE RIDING.

Tbose who work the pedals of the gracefil bicycle will, unhappily, find little to commend their favorite exercise in the columns of the medical journals. From time to time there bave appeared the results of inquiries of the medical faculty into the effect produced upon the body by continued bicycling; and though a verdict may scarcely be said to have been rendered, the evidence presented proved, in some cases, sufficiently convincing to condemn the practice. The latest opinion on the subject is contained in a paper contributed to the Londou Lancet by Dr. S. A. Straban, of tributed to the Londou Lancet by Dr. S. A. Straban, of
Nortbampton. Neitber Dr. Straban nor those who preceded bim on the subject condemn bicycling altogether; but wben indulged in constantly and especially when the course traversed is rougb or billy, they agree that it leads to serious disorders. In the case of growing boys, Dr. Straban declares that the amount of pressure upon the perineum direcily affects the prostate, the muscles of the bulb, and indeed the wbole generative system. "The pelvis," be says, "is flexed upon the thigbs or rolled forward. Tbis rolling forward of the pelvis is slight in easy riding, and very marked in fast riding and bill climbing. Now, when the body and pelvis are bent forward, tbe iscbial tuberosities are raised from the saddle, and the wbole weight of the body, save what is transmitted to the pedal by the extended leg, is What is transmitted to the
thrown upon the perineum."

This results, be says, in irritation and congestion of the prostate and surrounding parts, tends to exhaust and atrophy the delicate muscles of the perineum, and leads to early im potence. Many cases could be cited where races bave become almost totally impotent from immoderate equitation, as the Tartars, and partially so from the same cause, as the Indians. Like others who bave written on the subject, Dr. Straban speaks of the "disease of the Scythians," but doesn't tell us just what it was. We know that they were a warlike race and continually in the saddle, and can only conclude that be means this constant perineal pressure reduced them to the wretched condition in which $\mathrm{Hi}!$ pocrates tells us be found tbem. Hippocrates says: "Tbeir bodies are gross and fleshy; the joints are loose and yielding; the belly flabby; they bave but little hair, and all closely resemble one another." Yet bicycling is said to be ten times as severe on the erineum as riding.

THE EADS SHIP RAILWAY.

The working model of Captain James B. Eads' plan for the Atlantic and Pacific ship railway, now in process of construction across the Isthmus of Tebuantepec, bas been brought from London, and is now on exbibition in this city, in the basement of the Mutual Life Insurance building, Nassau and Liberty Streets. As a specimen of fine mecbaniNassau and Liberty Streets. As a specimen of fine mecbani-
cal work tbis model is quite remarkable, and probably surpasses anytbing of the kind beretofore constructed.
It represents the bydraulic lifting dock. by whicb the largest ships are quickly lifted out of water; the railway cradle and truck, by which the great vessels are transported across the country; and tbe bydraulic turn table, by wbich truck and ship are rapidly revolved to meet any required changes of direction in the line of travel of the railway.
The gigantic size of the cradle truck that bears the ship overland forbids the employment of curves of a less radius tban twenty miles; biat by means of the bydraulic turn table, which is simply a great float, the largest vessel may be turned, switched off to pass otber vessels, and run upon any desired diverging track, thus obviating the necessity of curves in the railway track itself.
The Tebuantepec Ship Railway will be 134 miles in length. It commences on the Atlantic side at Minatitlan, and will terminate on the Pacific side probably at Sylina Cruz. The working model now shown is made to a scale of three-quarters of an inch to a foot, and occuples a lengith of
about thirty feet. The model ship floats in water over a bydraulic pontoon, on which the railway cradle truck is placed. The working of the pumps soon raises the ship, and she rises out of water supported on self-equalizing bydraulic jacks, arranged in such manner that the lifted vessel, although above the water, may still be said to float thereon. Screw blocks attached to the truck cradle are now run up and secured against the ship's keel aud bottom at many points. The bydraulic jacks are then released, which leaves the ship secured within the truck cradle, ready for the overland trip. Wherever a turu in the road is to be made, or vessels coming the other way are to be passed, the ship aud truc'z are run upon a floating pontoon, the beight of which is quickly adjusted, and the ship is revolved to the degree desired, to reach the diverging track, and the journey is then continued.
The various parts of this wonderful model are made to work with surprising ease and accuracy. Captain Eads, plans for the practical realization of this great ship railway, including the working model, were examined and indorsed by huudreds of the leading engineers in Europe, and there appears to be no doubt in their minds of its complete success. The estimated cost of the railway is only forty-five milli, ns of dollars, and it will bave a greater capacity for the transfer of slips than the proposed Panama Canal, on which, it is said about one hundred millions of dollars bave already been spent, although the work may be said to have only just really begun.

Photo Enlargements on Canvas.

What is the best and cheapest method of producing an en larged photograph from a small negative on canvas for the use of the colorist in oils? This is a query, says tbe British Journal of Photography, that comes to us with a certain de gree of frequency. The question is one which admits of some latitude. It presupposes the existence of several methods, some of which are cheap; others-irrespective of custgood. Having a small negative of a portrait, how are we to enlarge it in a cheap yet good style?
One of several methods which forces its attention upon us at the present time is that by the transfer of a collodion film from the glass plate, upon which it has been taken, to the canvas upon which it finds a final resting place.
Let us suppose that an artist is desirous of baving a certain face and bust transferred to canvas. It is first of all neces sary that the apparatus for producing a large image of the original be at band. If daylight be the luminant employed, then the question is reduced to one of extreme simplicity. The negative is erected in sucb a mauner as to bave the sky as its background, and at a right angle to it is placed the lens by which an image is to be formed. A screen for re ceiving this image is erected at the other side of the lens, and the optical conditions are thus rendered complete.
We will now presume that the enlarged image bas been obtained in a collodionized glass plate of any reasonable di-mensinn-sucb as twenty or thirty inches in length by a pro portionate breadth-and that it bas been treated in such a manner as to insure permanence as well as the requisite amount of detail. What then? While the collodion image is being washed, let us curn our attention to the canvas upon which it is to be placed as a final support.
Canvas prepared for painters is readily procurable from those artists' colormen who make a specialty of this depart ment of artistic reqnirements; and we now take it for granted that a sbeet of such canvas bas been obtained. The first thing to do with it is to sponge it all over with soda (monocarbonate) and water until every trace of greasiness bas quite disappeared, allowing the water to flow freely over the surface. When this is the case a moderately strong solution of gelatine, containing a feeble admixture of chrome alum, is sponged over or otherwise applied to the surface of the can vas, and allowed to become quite dry. It is, indeed, better that such canvases should be kept in stock ready for use.
Lel us $n=w$ revert to the collodion image upon the glas plate. When it is found to be well developed and still clear in the shaldows, the plate is laid, glass side down, upon block or tablet which has been erected at one side of the siuk at which the development and washing bave been effected. The canvas, previously sponged over with water until plastic, is laid face down upon the collodion film, and pressed into close contact by means of the squeegee.
It is, of course, understood that the glass plate, previous to receiving its coating of collodion, sball have been thor, ughbly wiped over with a rubber charged with finely powdered French chalk or with a solution of beeswax in turpentine or otbersolvent. We find in our own practice that
French chalk answers the purpose admirably, and, as it is cleanls and easily applied, we commend its use to all who try this process.
The plastic canvas, now quite wet, must be pressed into intimate contact with the equally wet collodion film con taining the image, and the plate is then laid down upon a flat table, a few folds of blotting paper, backed by a thick pad, being superposed. This must remain undisturbed for a short time, after which a trial may be made at one corne to see if the canvas when raised carries with it the collodion film, which becomes detached from the glass in favor of the textile fabric. If the film be found to attach itself to the canvas, the latter should be carefully raised from the glass.
The great advantage of effecting the transfer previous to
The great advantage of effecting the transfer previous to the canvas and film becoming dry is that the film adberes in mort perfectly to the textile character of the fabric-and
dries flat; whereas, if the transfer be not made until the film bas become quite dry, the surface is of a shining and gloss cbaracter, being, indeed, then a transcript in regard to me chanical smoothness of the surface of the glass,
When the canvas is stretched out so as to become quite dry, the collodion film will, upou being dried, be found to bave become " part and parcel" of its surface. There will be no gloss, but the interstices of the textile fabric will be as plaiuly shown througl the thin collodion image-bearing film as if no such pellicle were superposed upon its surface.

Swift War Ships.

An opinion was at one time prevalent to the effect that higb rate of speed could only be attained by vessels of very large dimensions, until Sir E. J. Reed demonstrated the fallacy of this assumption by designing the Pallas. The Iris and Mercury, designed by Mr. N. Barnaby, and the Sfax, of the French Navy, designed by M. Bertin, which are the swiftest cruisers of the respective navies, are vessels of considerable size; but Herr Dietrich, chief constructor of the German Navy, has shown that a ligh rate of speed can be got out of a cruiser of, comparatively speaking, inslgnificant dimensions. We refer to the Blitz, launched in 1882, which is a vessel of only 1,380 tons. She carries an armament of one $43 / 4 \mathrm{inch}$ and four 33% inch Krupp guns, as well as torpedo discharging apparatus, and is propelled at a speed of 16.2 knots by engines of 2,816 indicated borse power. The successful per formances of this craft bave, no doubt, induced our own and the French naval authorities to follow suit, the former with the Alacrity and Surprise, and the latter with the ves sels of the Condor type.
We bave already observed that speed is, in our opinion the most important requisite of a modern cruiser, even if it is purchased to some extent at the cost of ber fighting power. Messrs. Sir W. G. Armstrong, Mitchell \& Co. bave, can be combined with a high rate of powerful armame moderate or even small dimensions. The Protector, for in stance, is a vessel of only 900 tons; yet she steams 14.2 knots, and carries one 8 inch and five 6 iuch breech loading guns. The Japanese cruiser Tsukushi is another vessel o the Elswick type. She bas a displacement of 1,500 tons, steams 17 knots, and mounts two 10 inch and two $43 / 4$ inch breecb loading guns. The largest vessels of this class a present afloat are the Italian Giovanni Bausan and the Chilian Esmeralda, sister ships. The Esmeralda bas a dis placement of 3,000 tons, a mean speed of $18: 3$ knots per hour, and carries two 10 inch and six 6 inch breech loading guns. It is not probable that ber designer, Mr. W. H. White, will rest satisfied with these results, and we may therefore expect to hear of even still greater achicvements ere long. Unfortunately, the British Navy bas not as yet derived auy benefit from the experience and enterprise of the Elswick firm; and while Italy, Austria, Japan, Cbina Chili, and otber possible enemies are availing themselves of our national resources, we are "fascinated" by the activity revailing around us, aud are seemingly incapabic of ener getic exertions. The smaller foreign naval powers, notably Germany, are watching the gradual decline of our naval supremacy with evident satisfaction, as their second rat fleets are thus brought into greater prominence. The Ger man Navy is composed of seventy-tour steamships, includ ing twenty-seven iron clads, which force is sufficient to se are an overwhelming majority to the navy of either France or England, should tbe interests of the empire necessitate its active participation on one side or the other in the event of war between England and France.-The Engineer

Armor Experiments at Spezia.

The following statement of the resalts obtained during the recent armor plate trials at Spezia is from an Italian ource, and bas not been verified by us. We bave no rea son, bowever, to question its substantial accuracy in all respects. It will be seen that the gun bas again scored a victory, and in so far the armor controversy assumes another phase. In a letter to the $T^{\text {imes marked by all his great }}$ ability, Sir E. J. Reed criticises unarmored cruisers, and en deavors to show that their destruction must be certain should they encounter an ironclad. The Spezia experiments, bower, seem to indicate that the only armor which can be of any real use must be so thick and of such euormous weight hat the construction of a small high-speed armored cruise is nut of the question. In other words, the fact seems to
be that against such guns as tbose carried, let us say, by the Esmeralda, vessels of the Penelope or Bellerophon type, carrying moderately thick armor, would be as badly off a he Esmeralda berself, while the greater speed of the latter ship would place ber in a position to figbt or not just as she pleased, and to fight when and how she liked.
The experiments against armor, which took place on the st Octnber at the polygon of Muggiano by the Royal Italian Marine. bave excited a lively interest in the maine and in military circles. These experiments bad been ordered by the Minister of Marine to find out exactly the resistance of the armored redoubts of the Italia and Lepanto clad with Schneider steel or compound.plates, and above all to ascertain the effective power of the new Armstrong 43 centimeter breech-loading gun, with forged and tempered steel projectiles of best quality. For this purpose there had Italia. The plates were placed against a backing of teak
wood 520 millimeters thick. The plates measured all three 3,050 millineters long by 2,600 millimeters wide, by 480 millimeters thick, and were all fixed to the backing by eighteen bolts. One of the plates was forged Schneide: steel from the works at Creusot, and two of the compound type from Cammell's and Brown's works. In all experiments hitherto made, chilled cast iron or steel cast projeciles bad been used with a velocity not exceeding 470 meers at impact. In the experiment of the 1st October, nol only were forged steel Krupp projectiles used-which are supposed to be the best at present-but they were also fired with a velocity of 580 meters, i.e., with 100 meters more veocity at the point of impact than in the previous tests.
The introduction of these two vew factors in the firing were, as bad been perfectly foreseen, of sucb a nature as to modify the results obtained. In effect, the Schueider and the compound plates bad until now broken the projectiles of medium quality, sucb as cast iron and cast steel, at the first slock. Such shot produced in the plates damage varying according to their degree of fragility, without piercing them. The new forged steel projectiles, such as those of Krupp's make, possessing tenacity and great cobesion, require, in order to break them, an effort and space of time infinitely reater than those of cast iron or brittle metal, so that their effort of penetration or puncbing the material of the plates was time to develop itself before the pieces of the projectile ecome separated.
In the test of the 1st of October, the circumstances fore-
 The 43 centimeter Armstrong gun was charged with four bags of $87 \frac{1}{2}$ kilogrammes each, being altogether 350 kilogrammes of progressive Fossano powder, and a perforating bollow projectile of forged and tempered steel from Krupp's works at Essen, weighing 835 kilogrammes weighted. Under these conditions the initial velocity measured at each discbarge was an average of 572 meters, and the target being at a distance of 99 meters from the mouth of the gun, an average velocity at impact of 568 meters was the result. The projectile had thereforc a total energy of 13,700 meter tons at impact, that is to say, the energy required for piercing an iron plate 99 centimeters thick, according to the formulæ of he French Navy.
Under such conditions of firing, which bave never bithero been produced with any gun, the following results 'were obtained: The first shot fired against the Cammell plate pierced it and the backing, dividing the plate into six large picces by radial cracks. The shot was broken up, the point being carried to the sandhill, distant 15 meters, which it ntered to a depth of 400 millimeters. The second shot was fired against the Brown plate. The results were similar. The plate was divided into four pieces only by radial cracks, but the steel face was torn off round the point of impact. The projectile was more broken up than in the first shot, and be point was found lying at a distance of 7 meters in the rear of target, i.e., in the front of the sandhill. The third shot was fired against the Schneider plate. The projectile pierced the plate neatly, like a punch, forming a circular hole 580 millimeters diameter. The plate was divided into ibree large pieces by radial cracks. The projectile was found to be least broken up of the three, and the point to ave entered the sandhill to a depth of 1,400 millimeters.
The compound plates bave therefore, it appears, shown more resistance to penetration than the steel plate, altbougb they were more broken, as anticipated, but no portions were stripped from the targel, and the lateral support which the compound plates bave from the adjoining plates when fixed on the ship's sides would place them there under much more avorable conditions than in the Spezia experiments; while the same conditions would not increase the resistance of a softer material, such as the Creusot steel plate or an iron plate. As compound plates 48 centimeters thick under favorable circumstances bave shown such resistance to penetration at close range and normal fire of the present most powerful gun, it is evident that, when placed on a ship-espesially at au angle, as in the Lepanto and Italia-they will afford perfect security against the attack of the same gun when fired at any probable distance and under the most fav. rable circumstance which are likely to exist in actual warfare. They bave also the well known advantage of resisting the projectiles from small guns better than steel plates. These can be destroyed by projectiles which would bave very little effect on compound armor.-The Engineer.

Treating Tellurium with Nitric Acid.

It is generally admitted that in the reaction of tellurium nd nitric acid the only product is tellurous anbydride. M. Klein in a former communication described a basic teluric nitrate obtained on attacking tellurium with a large excess of bot dilute nitric acid. The authors baving re-ex amined the matter, find that on treating tellurium with nitric acid there is formed-(1) a solution of tellurous bydrate soluble in nitric acid (at about 0°); (2) a tellurous nitrate. which is decomposed at 70° to 80°, forming tellurous andy. dride and a basic nitrate. This tellurous nitras is formed at about 20°, and is decomposed spontaneously on standing; even in the cold, into basic nitrate and anliydride. The basic telluric nitrate is also decomposed by water. The properties of tellurous anbydride bave been very incorrectly described. It is spoken of in the test-books as slightly sulphate 1 part requiring for as insoluble as barium water.-D. Kloin and J. Morel

