
HINTS TO CORRESPONDENTS

(1) J. H B. B. asks: How can I determine the velocity of water in a pipey I have an artesian well and it is sugpected that there is a 10 ss of water by per-
colation through the joints of the pipe. If there is some simple device which I could let down 250 feet and ascertain the velocity there, and then get it at the top, I could of conrrese settle the question of loss, and asper--
tain the amount of water. A. We know of no method tain the amount of water. A. We know of no method
of accomp ishing what you want by getting the differ of accomp ishing whal you want by getting the differ
ence of velocities; if yon could run down a self -packing plug to the bottum of the pipe, you collld then dis.
cover if there are any leaks by the subsidence of the water in the pipe.
(2) J. A. R asks: 1. Would it do to a lach the engine shaft direct to the saw shaft by a coup.
ing? A. With a slow saw and f, st feed the saw would ling? A. With a slow saw and f,st feed the saw woulc
wedge and heat. Do not think it advisable to attach engine shaft to saw shaft under any circumstance. I bad a dispute with several persons about the leggth of belt used on common steam thrashing machine. I
claim after the belt has all the grip the pulleys will llow, then any more length of belt is lost weight an harder on the machinery. How is
advantape in extremely long belts.
(3) A. D. writes: Is it necessary to oil well tted bearings (light work) as often as customary? now of a case where a ebart, through neglect of a employe, was allowed to run three months on one oil
iugat 10.000 revolutions per hour. Not the slightest damage was done to the "Babbitt", or to the sbaft, nor was there noise or heat. A. This looks rather extravapant. There is a patent for dry journal bozes. As far
as kuown o us, they have been failnrea.
Probably the as known tous, they have been faill rese. Probably the
shaft in
(4) L. D. B. asks what Bessemer steel is and if nails made of it are as good or any better than
he coumon iron nail. A. Bessemer steel is a low grade of steel made by blowing air through molten ron in a converter. It is tough and strong, and is tle
(5) J. A. L. asks: 1. What is compound spiritg of ammooia? Can I Icompourd it? A. For com-
pound epirits of ammonia, the aromatic spiritis of ammonia are usually dispensed by druggists. Its preparaion is simple to those familiar with phawaedic tates Pharmacopexia,which deesribes its manufacture is:
 Distilled water enfficiento man
2. Are spirite of turpentine and oil the same? A. They other edged tools? A. It is generally considered that (6) W. R. G. asks: What will cure a do of the mangee A. Any
lotions for the mange

crosive sublimate.........34 ounce.	
Hydrochloricacid..................1/2	
Water..........	1 qua
rrosive sublimate mmonium chlorid	$\begin{aligned} & 1 \text { drachm. } \\ & .1 / 2 \text { ounce. } \end{aligned}$

Wate
 or, to the

(7) J. H. G. asks: Is the cause of the potat "scab" known, and what is the cause and remedy? A.
Potato "scab" and "skin crack," though not identical diseases, ought to be considered together, for their causes are apparenty the same. They proceed from an irregnlar supply of moisiure to the growing root and plant. Where the growth has been vigorcus and rapid, and has been then checked by drought, the ekio of the potato becomes ifm and birong: if now a audden and rapid growth starts,this firm skin is cracked by dis.
tention, and (he cracks extend down into the etarchy enubtance; this is "skin cracl." In another case, ${ }^{\text {substance, }}$ where the new and rapid growth is perhaps not quite so sudden in tts start. the skin instead of cracking be comes rough and thickened in patches and scales; this
is "ecab," and results from excessive development of is " "cab," and results from excessive development of
the cork cells forming the inner surface of the skin. In either case, "ecab" or " skin crack," the tissues be neath become diseased and die to the depi h of haff an
inch more or less, of couree injuring the value of the inch more or less, of courge injuring the value of the
crop. Ia thisdecayed tiseue, various miles barely visible, and others too small to be detected without the help of a microscope, make their home, and have been erroneously supposed to be the cause of the injury.
Theee forms of diease were first described by Dr. Herman Schacht in tis report to the Prussian Board o Agriculture, in 1888.
(8) S. D. K writes: We want to make some cider jelly. Will you please niorm me how much gela-
tive to use to a gallon of cider?
jelly, 2 ounces of gelatine are diesolved in a a pint of col
water, and when diisolved, 1 pint of hot water and added, that is, 8 ounces to the gallo (9) C. B. H. writes: I wish to decolorize red wine vinegar. I think of leaching it through animal charcoal. Will the commercial variety of that article answer my purpose, or would the vinegar be too
much contaminated by diseolving the phosphates, carmuch contaminated by diseolving the phosphates, car--
bonates, etc., in the coal? If so, how could the coal be prepared so as to be fit for the purpose? Would wood coal answer? gar, pints red wine vinegar are mixed whits ounce this misture from time to time, and in two or thre days the color completely disappears. When the pro-
cees is t be performed in the large way, throw the bone cess is to be performed in the large way, throw the bone
black into the cask of vinegar, shaking it from time to black into the cask of vinegar, shaking it from time to
time. Wood charcoal if ground fine would answer,ani the impurities contained in it are so slight in quantity the impurities contained in it are so
that they can be entrely diregarded.
(10) J. B. asks what kind of cement to use to fix a glass eye with. A. Dissolve fine glue in strong
acetic acid to form a thin paste, or use Canada balsam cetic acid to form a thin paste, or use Canada balsam
rclear glue (getai ine) to which has been added a quantity tone iffitith) of potassiunb bichromate. The latter Boon loses its yellow tint,and beco
by dampness when exposed t d daylight.
(11) J. F. S. asks how near a complete vacuum can be produced by an exhaust fan. Or in
other words how low can the mercury in a barometer ee reduced how low can the mercury in a baromete which an will produce a draught, but not an appreciable vacnum, only about equal to one or two ounces nega
tive pressure, say about one-quarter inch on the bar meter 2 wish to produce a partial vacuum in if tight cylinder 2×10 feet, and with either an pump or fan instead of the regliar air pump. Which wonld
pump.
(12) W. F. W. writes: I have a steam pump used forraising water. Pump $34 / 4$ and 587 inches, I run this pump contrnuouely 10 hours, and pump eay 9.000 gallons during that time. The lift from the surface of the well to top of tank 1 rs 55 feet distance,
of well from the pump is 68 feet; suction pipe of well from the pump is 68 feet; suction pipe
$21 / 4$ inches; delivery pipe, $11 / 8$ inches; I throttle the valve so as to run elow. The boiler pressure run an engine and for other purposes. I wish to ind out some method of getting at the cost of raising thi ay at three mills per pound. I also would like to now the method used to obtain the result. A. The computed 18 or the pump in volume of water is abo 18,500 pounds 1 foot high per minute. The compute
work of the pump at the presaure you name is abo 40,000 pounds 1 foot high per minute. So you muet lose over 100 per cent in friction. The indication by steam is $11 / 4$ horse power, which, considered with the uncertain economy of boiler, you may safely asign at
8 pounda per horse power. or say 100 pound coal pe 3 pounds per horse power, or say 100 pounds coal per
day, or 30 cents for coal alone. oil, attendance, and inerest must be added to this for obtaining a prope value of the cost of pumping. For the detail of thes
omputations we refer you to Haswell's Enginer' Pocket Book.
(13) G. W. F. asks the process for cleaning nd polishing steer horns. A. Rough down the horm crape with or broken tlass or make the surface even. The net makers use for finisthing hard woods. Then finis with a buff of felt (wheel or hand) with tripooli and
water. Glose with whititg and water on a soft buff, water. Glose with whiting and water on a a oft buff
finishing the gloss with a cloth and dry whiting.
(14) H. L. R. asks for the best glue or sub litute for glue of a waterproof nature, to ase in glu
ing the white kid leather to the pine ribs of an organ
bellows, where the bellows is situated in a damp room nder which circumstancess ordinary glue softens, an diows the leather to come off from the wood. A. Th your glue and the subsequent exposure of the glue material to light would probably secure the deeired re-
(15) E. L. desires a receipt for making Good stove polish or paste. A. Black lead pulverize 1 pound; t.
ounce; mix.
(16) Z. D. asks: How many gallons of wate er minute should a $34 / 4$ inch pipe one foot long with ree from other friction than the one foot nozzle.
(17) B. J. B. writes: I am digging quite a arge cistern (13 feet diameter and 10.feet depth); woul rectly over the clay sides, or whelter a brick wall musi cood recent work on the construction of cisterns? A ou may make a good cistern wall wilh a concrete of Guken stone. But to make it thorougghly substantial he concrete should be rammed between a crib and the clay wall, so as to have a solid outside bearing suitable wake the arch nearly hemispherical, or half a sphere or safety, although experienced persons could mak much fitter. For the arch use 50 per cent more orthanc cement than noted above. Build the suppon nd cover with sand to give it tre form ind tamp concrete around the outside fret. filling in solid againe he earth bearing for supporting the arch; finish at the oole in the center last. Make the arch at least 8 inches hick at center and 12 inches at the outside bearinge.
(18) A. L. P. asks: 1. How do astronomers catcuate the di- tance to thesun or any heavenly bodyt tain the angle. A. By making a triangle of which part of the earth is the base; observing the zenith dis.
tance of the sun's center at simultaneous moments,
the chord of the arc between the places of observation
being computed from measurements actually mad upon the snrface of the earth for the purprse of estab-
lishing its d: ameter, upon which is based this method of lishing its d ameter, upon which is based this method of
computation. The transit of the inner planets, particularly Venus, has given a more refined method of triangulation, which is somewhat complicated. You ma technical work upon astronomy. 2. A vessel movingat the rate of 10 or 15 knots an hour. Does it leave a vacuum or hollow in the water at the stern of the vessel, or does the water follow up the vessel, so as to keep
in constant contact with the stern? A. The motion of in constant contact with the stern? A. The motion of vessels through the water produces a slight depression
under thestern from the inertia of the water, or inaunder the stern from the inertia of the water, or ina-
bility to acquire the momentum necessary to instantly the cavity
(19) E. L. M. writes: 1. Do you know of any machine shops where they take apprentices? If so, machine shops is always dependent somewhat on the appearance of the applicant, and is largely a matter of personal judgment with the employer; the opportuni-
ties have been often better than they are just at pres ent, but any young and intelligent: man earnestly desiring such an engagement, and applying in any considerable manufacturing locality, would not, we pre-
sume, have long to wait for an engagement, though we do not now know where there are any vacancies, Would two cylinders 3×5 inches develop more powe han one 6x6 inches? Which is most economical an rightest, also horse power of first? A. The 6 inches by 6 inches would be more than double, the power of two
3 inches by 5 inches. We cannot estimate the power inches by 5 inches. We cannot estimate the power, gyougive neither the pressure of steam nor velocity inder, cylinder heads, etc, for high speed two cylirder 3×5. A. Steam openings, five-sixteenths inch by inches, exhaust openings $\% / \mathrm{inch}^{2}$ by $2 / 4 \mathrm{inches}$. Your cylinders, heads, etc., may be made about as light as
they can he cast, bored, and turned. 4. Would the they can he cast, bored, and turned. 4. Would the
boiler described in Supplement, No. 182, furnish boiler described in Supplement, No. 182, furnis
abundance of steam for the above engine y A. No. no half large enough for the two engines; boiler should ave 130 feet free surface. 5. Would above engine 14 miles per hour; if not, what size boat? A. No; but iitle more than $71 / 2$ miles with a boat 28 to 30 feet by fet. You may get with good model 91/2 to $10 / \frac{1}{2}$ mile achor. 6. Could sails be applied to above stea derriment generally
(20) W. D. writes: Will you let me know when propelled by six paddles? The face of auch paddle is two feet six inches by two feet; three paddles dip time and as they pass out the other three ente here is one yard of space betly, and leave it the same each paddle revolves in its own circle; and to run eveu hundred revolutions perminute, and have ad the foll length of the paddle, namely, two feet sit inches; the two hulls fifty feet long by three feet of water when in sailing trim; width of boat twelv feet. paddles in middle of boat, three and three, par thel to each other. It is my opinion I can make th and it is thirty-five miles; the grip of the paddles is good for one hundred revolutions more, if need be
Can I do it with a boat and paddles as I have described to you? A. There is no data upon which your questio an be answered, but we do not hesitate to say that yon cannot accomplish what you propose, and advi
(21) J. D. B. writes: Referting to Scien tific American, August 23, 1884, Notes and Queries
No. 31, what size screw, number of blades and pitch o. 31, what size screw, number of blades, and pitc umber, also size of boat, and probable speed of boa have an engine aud boiler 2x4, 3 inches stroke, but m 4×9; 121 a litle bigger, it is 14 x 28 , including firebox, etting stopped up; what have much tronble with fued uel, except wood? I have ueed soft chunk coal; brok hem to size of walnut. A. Propeller a bont 17 nch 6 fameter and 2 inches pitch, three hlades. Boat 15 5 to $51 / 2$ miles per hour. Your boiler is too small; ; shonld be about 18 inches diamter, and 32 inches igh. Furnace not less than 12 inches deep, and should oal, chestnut siz
(22) E. P. S. asks for some formula for oap powders. $\boldsymbol{\Lambda}$. Use any suitable kind of hard soap
(23) Upsilon wants to know recipe for an cid mixture that will restore files and other cutting dools, when blunt from nse. A. Thoroughly clean from olution made with 1 part nitric acid, 3 parts sulphuric coording to fineness of cut. 5 seconds to 5 minute dip in milk of lime, dry, and oil.
(24) B. S. writes: I have a bunch of smal chains entrely coated with rust. I have used coal o recommend a bettermethod? A. Shake them in a ba fine sand or emery
(25) D. T., Jr., asks: 1. When is " 24 2 midnight? A. Midnight, civil time; at meridiag, in at 12 M . or 12 midnight? At 12 M .
(26) C. B. B. writes: With engine 2×4 wches for a very small, light launch or canoe, say 15 rical vertical boiler without tubes or flues run it at moderate rate of speed? What should be height and diameter of smallest boiler that would answer? tubular, what should be height and diameter of rhell.
length, size, and number of tubes, and distance of
boiler above erate? Object being to have boiler as
smalland light as possible. A. A plain vertical hoiler without tubes would be too heavy. Yonr boiler should be about 18 inches diameter and 32 nches high, with tubes, so as to give say 28 to 30 feet fire surface. Use
coke or anthracite coal, chestnnt size coke or anthracite coal, chestnnt size. You should
make a drawing of boiler to see what tubes you can get make a drawing of boiler to see what tubes you can get
in. The furnace ehould notbe less ihan 12 inches deep. (27) J. H. B. asks: How many borse power engine would be required to drive a single paddle
wheel 5 feet in diameter, face 2 feet 6 inches, buckets 6 inches deep? The boat is a light draught catamaran 30 feet in lengit. Please state the size and stroke of cylinder and the number of square feet of heating surface of boiler. Wonld it be as econumical to have a long stroke engine with direct connection with crank shart, and thus avoid the noise of the gearwheels. or a hort stroke gearea? How many turns should ehe be geared up? How many revolutions should the paddle
whetl make to insure a fair speed to the boat? A. One engine 4 inches cylinder by 10 or 12 inches stroke, direct connection to shaft. Boiler to have about 60 feet ire surface; 40 to 45 revolutions per minute.
(28) J. R. C. asks: Will you please let me now in the uest number of your paper the heating bituminous coal, that is to say, how much petroleum will equal one ton of coal? A. Two-thirds of a ton of petrolenm equals one ton of the coal. Heat of com-
bustion, 20,240 units. Evaporative power at 212°,
 20.33 pounds water to
$3 / 4$ of these amounts.
(29) H. B. S. writes: I want something to atick paper labels on to wood or glass that wili stand
being wet or put into water. It need not stand hot water. A. In order to render glue insoluble in hot even hot water, it is only necessary when dissolving the glue for use to add a little potassium bichromate to the water, and to expose the glued part to the light. The proportion of bichromate will vary with circumstances, but for most purposes about one-fiftieth of (30) N.
(a0) N. B. H. writes: 1. What would be peller, and ehaft. with all fixcures, euch as is deécribed in Scientific American Supplement, No. 81 (July 21, 1877), on the noat Fliri? A. Probably $\$ 880$ to $\$ 300$. . Would it be suitable for one of the Sharpie model he boat to run on the St. No. 177? We wa where in the lowest water there is not more than 18 or 20 inches. Smooth, gravelly bottom. If that ma-
chinery would not be suitable for snch a hoat, could you suggest any that would answer the purpose, with cost? A. Yes, but would suggest that you make the
"Sharpie" 5 or 6 feet longer than that shown in No. I77. The machinery would do very well for such a boat, givThe machinery woula do very a speed of about 6 miles per hour
(31) C. A. P. asks : Will you please be kind nough to state why and when the kaolin should be etc., should be boiled? If so, how long, and bow to prevent bubbles from furming on the eurface of the hektograph? A. The kaolin shonld be added when the solution of the glue and slycerine is complete. It is added simply to give the pad a light color. For the otherinforman pplement, No. 374.
(32) E. K. E. asks: 1. What is the venefit obe derived by searching for the norih pole? A. The practical benefit 18 doubffnl, but ecientists hope information so obtained may guide us in researches on magnetism and electricity; also teach us more of the
history of this planet. giveus a better knowledge of cean currents, and throw light on many other obscure points of geology and physical investigation, though it must be confessed a great many people doubt whether
he probable ber,efits are worth the cost. 2 . How the probable ber,efits are worth the cost. 2. How would the explorers know when they would reach that
that point? A. The explorers know their latitude by that point? A. The explorers know their latitude by
observations there, the eame as on any other part of observatio
(33) J. N. B. writes: I am trnubled to coat castiron perfectly with tin, having it roll off in places in trough the work was greasy. Have ried boiling it of vitriol, and then rinsed in water, pased through dilute muriate of zinc, but have never been able coat cast iron with the same perfect coat and gloes that I can wrought or malleable iron. I have seen some lots of malleable iron that were imperfectly anwith cast iron. What is the cause of it? A. Your rouble in tinning cast iron is not yours alone. The of a perfect tinuing process that is not expensive for cast iron will make a fortune if he can secure the process for his own benefit

INDEX OF INVENTIONS

For which Letters Patent of the United

 September 30, 1884,
AND EACH BEARING THAT DATE

[See note at end of list about copies of these patents.]

Accumulator, J. R. Morgan Adjustable chair, Poolman \& Marks................ 305,845 Aerated beverages, dispensing apparatus for, J. Matthews Air and gases, apparatus for purifying, F. Windbausen. Alarm. See Steam alarm. Alarm lock, till, J. C. Sturgeon. \qquad 905.766 Amalgamator, W. Noller Arsenides and sulphides. working auriferous and argentiferous, E. Probert. Axle box, car, G. F. Gear..

