Concrete vs. Brick Floors

The designer of a certain warehouse in. Germany, unable to find definite data of the resistance of such floors, resolved to make trials for his own information, and incidentally for that or his professional brethren. The warehouse was of immense size, covering nearly an acre of ground, and was intended for the storage, among other things, of beavy pieces of metal, the handling of which often involved considerable ebocks to the floors. The whole building was fireproof, part of the flooring being of brick arches in cement, between iron beams, and part of concrete slabs supported in the same way. Five trial floor arches were built, each 44 inches in span, of which the first consisted of concrete, made with one part Portland cement to five parts of gravel, whil the second was of bard bricks in Portland cement mixed with three parts of sand, and was covered with a coat of asphalt three-quarters of an inch thick; the third was of solter brick, in mortar conaining one-half as much lime as cement, and four parts sand; the fourth was of the same brick, in equal parts of lime and cement, and five parts sand; and the fifth was of the same brick, in cement alone, mixed with four parts sand. These last floors were finished with a coat of cement, three-quarters of an inch thick or more.
Fifty-four days after their completion, each floor wa loaded with pig iron to the amount of 200 pounds to the square foot. This weight had no effect, and two days later the concrete arch was tested by letting fall upon it an iron ball of 60 pounds weight. This, dropped from a beight of five feet, did no harm, and another ball, of 135 pounds weight, was let fall from the same beight. The first blow produced no effect, but by cropping the ball repeatedly on the same spot a crack was started at the fourth blow, and the eighth broke a hole entirely through the floor, the opening being 4 iaches in diameter at the top and 24 inches at the under side.
Thirty days later the same test was a pplied to another par of the floor, and a hole of the same size and shape was broken through at the ninth blow of the ball. The thickness of the concrete in the middle of the span was 4 inches Trials were made of the brick floors in the same way. The first, of bard brick in strong cement mortar, stood forty eight blows of the heavy ball before it was pierced; the sec ond, of softer brick, with lime added to the mortar, gave way at the tenth blow; the third, at the seventh blow; and the last, of soft brick in sandy cement mortar, without lime, at the tenth. In all these cases the hole broken through was much larger at the intrados than at the extrados. A new floor was then built of soft brick, in mortar made with two parts lime to three of cement and ten of sand, and covered with a layer of concrete, of equal parts of cement and sand, 2 inches thick. After this had set, the floor required seventy one blows of the 135 pound weight to break it through. This protective effect of the thick layer of concrete over bricks is very curious, but aside from this; the result of the Architect.

Exemption of a Physician's Property Irom Debt
A New Hampshire physician was unfortunate enough t fall into debt and have judgments entered against him. The creditors naturally tried to obtain payment by issuing execution, and among the articles levied on by the sheriff were the physician's wagon and harness. The New Hampshire law says that such articles as are "tools of a person's occupation" cannot be seized and sold under an execution. The physician maintained that his wagon and harness came un der this designation, and tried to recover them from the sheriff. The court, in deciding the question, which is al important noe, does not settle the particular case, but refer it to a jury. The legal principles involved are of interest and we quote from the decision as follows:

The court canont say, as a matter of law, that a wagon or a barness is a tool of a physician's calling, and so exemp to all physicians; nor can they say that it is not such a tool The most that can be said, as a matter of law, is that it may be a tool of his profession if, in the particular case, it is rea sonably necessary for him to use it as a tool. If it should appear that his practice was contined to his office, or that he was a physician or surgeon in a hospital, attending to no cases outside of the institution, or that he was a surgeon on shipboard, or that he went on font or horseback, or on the cars, to visit his patients, a wagon and harness would not be exempt under our statute, because they would be of no use to him as tools in his practice. They might be of use to him in other respects, as in going to church, or in carry ing bis children to school, or in visiting friends, or as means of recreation and pleasure; but these uses are manifestly not within the legitimate scope of the technical duty of a physician. Not coming within the strict definition of the term tools, and not being reasonably necessary as tools for him in his practice of his profession, they would not be tools within the meaning of the statute, and so would not be exempt as such. But if it should be found that the physician chiming the exemption could not praclice his profession with reasonable success without a team with which tor visit his patients; that he was located in a country town, for example, where it was necessary for him to ride a large part of the time in order to accomplish anything professionally, a wagon and barness might properly be found to be reasonably becessary for him as tools of his occupation. But the finding would be one of fact, so far as the reasonableness of the use is concerned; and it could not be said that these article are exempt to every physician, or to physicians generally,
but only to the debtor in the particular case. If there is any doubt whether an article claimed to be exempt from attach ment is a tool under the statute, the question should be sub mitted to the jury whether its use as a tool by the debtor in his business is reasonably necessary. If it is, it is exempt otherwise, it is not exempt."

IMPROVED VISE.

The ohject of an invention recently patented by Mr. William M. Whiting, of Elizabeth, N. J., is to construct a vise for grasping and securely bolding articles of various sizes in such a manoer that the pressure exerted by the pivoted jaws may be increased at will by a device acting independ ently of the screw and nut usually employed for forcing them together. The jaws of the vise are of the usual form. A screw threaded bolt extends , brough holes in the jaws, and at one end is pivoted to a cam lever, which also serves as a head for the bolt and prevents it from passing through tio hole. A nut turns upon the thread of the bolt projecting

from the opposite side of the vise. By means of this nut the jaws may be forced together, but where a greater pressure is desired than can be oblained in this way, the cam lever is raised so that the narrowest portion of its ec
After the jaws have been brought sufficiently together the nut, the final pressure for grasping the object is obtained by forcing the lever downward, when it may be conveniently held by grasping it in the hand, together with the lower portion of the vise. This vise is designed with especial reference to the requirements of telegraph line men, and is of great value in working upon several articles of the same size, for in such case it can be set, by means of the screw, so as to allow the object to be readily placed between the jaws, after which the grasping pressure may be instantly se cured by a single movement of the cam lever.

COMBINED PAPER WEIGHT AND PENCIL SHARPENER

 A small article which artists and draughtsmen will find particularly useful has been recently brought out by Messrs. Keuffel \& Esser, of 127 Fulton Street, New York city. In a cast metal coverless box are journaled, longitudinally, two rollers, the axles of which are extended through the case at one end and provided with buttons by means of which they may be turned. Eacb roller is formed with a longitudinal slot just wide enough to admit the edge of piece of fine sund or emery paper, waich is of such a length

COMBINED PAPER WEIGH'T AND PENCIL SHARPENER.
s to admit of its being wonnd several times around the ollers. The paper passes over a bar placed across the top of the box parallel to and between the rollers, and thus pre sents a wide surface upon which the pencil may be conveniently sharpened. When the exposed part of the paper ecomes worn, a clean portion may be brought up by sim ply turning one of the rollers. All the dirt is collected at
the botton of the box. The device also forms a very landy the bottom or the bux. The device also forms a very landy paper weight.

decisions relating to patents.

 court.the brown manufacturing company vs. deere \& co. Blodgett, J.:
The tirst claim of letters patent No. 190,816, granted to William P. Brown, May 15, 1877, for an improvement in couplings for cultivators, examined, sustained, and the de endant held to infringe.
The phrasc in the claim " against or with the weight o he rear cultivators or plows" should not be read, as de fendant contends, "against and with the weight," etc There is no uncertainty or ambiguity in this claim. The laim is comprehensive enough to cover both the arm, M by which a spring power is applied), and the arm, \mathbf{M}^{\prime} (by which the draught power can be applied), for the purposes to which the inventor proposed to apply tuem.
The objection that the specification describes and the claim overs a useless form or construction, as well as a useful one, is of no avail where the infringer uses the latter. The well known maxim applies, "Utile per inutile non vitia tur', that which is serviceable is not to be rendered invalid by that which is useless.
Transferring the point of applying the lifting force of a spring from a point behind the forward end of the bcan to an arm on the coupling, to which the beam is pivoted, held to involve patentable invention.
The fact that not ouly the defendants in this case, but other large manufacturers of cultivators, have at once adopted substantially the same auxiliary lifting devices sbown in complainant's patent is evidence of the popular acceptance of this as a practical solution of many of the difficulties which had been encountered in the attempt to use the older devices, and is such a change and improvement as required more than mere mechanical skill, and brings this device fairly witbin the domain of the patent laws.
The fact that these older devices-Stover of 1870 and Brown of 1872 -which it is now claimed were susceptible of being modified by mere mechanical skill into a machine in its operation and effect like that shown by the complainant's patent, rested without any such modification until the pre sent patent was promulgated, held to be quite conclusive proof that it required somethin ${ }_{5}$ more than mechanical skill to produce what is shown in this patent.

United States Circuit Court.-Southern District of New York.
holmes electric protective company $v s$. metropolt tan burglar alarm company.

Wheeler, J.

Patent No. 120, 874 , granted to Edwin Holmes and Henry C. Ruoue, November 14, 1871, construed t_{0}) be for an elec rical covering fitting the outside of safes, as distinguished from an electrical protection applied to bouses and other buildings and to rooms. The patent sustained, and a preliminary injunction granted.
The provision of the statutes that a United States patent for an invention previously patented abroad shall the so imited as to expire at the same time with the foreign patent seems to mean that the term of the patent here shall be a long as the remainder of the term for which the patent was ranted there, without reference to incidents occurring after the grant. It refers to fixing the term, not to kecping the foreign patent in force.

Rifte Caliber Machine Guns.

Lieut. Sleeman, in an article in the $N . A$. Review for Octo ber upon the development of machine guns, says:
The use of rifle caliber machine guns offers to a general the simplest and most effective means whereby to intensify ifle fire at any point of bis position, without causing the offensive or defensive power of any other part to be weakaed for this purpose.
Rapid firing single barreled shell guns possess some ex ceedingly important features for the military service, whether used in the field, as mountain guns, or for the armament of fortifications and eartbworks. The properties that most strongly recommend these guns for serv ice in the field are rapid fire, little or no reccil of gun carriage, mobility, simplicity of mechanism and manipula tion, and, lastly, the use of made-up or self-contained ca tridges. It is difficult to conceive of more suitable guns for light borse artillery. Take, for inslance, a battery of six rapid firing three-pounder shell guns, each capable of dis charging eight projectiles in half a minute, with deliberate aim between each shot. A battery of this nature could in this short period of time deliver forty-eight projectiles, equivalent to 144 prunds of metal, and if common shells were used, with 1,440 splinters, or for shrapnel shells, with 2,016 lead bullets. Such a rain of bursting shells would creat terrihle confusion, and bave a most demoralizing and de structive effect, if thrown among a body oi troops, while i directed against earth works or houses, the continuous fire of shell after shell would soon produce considerable damage The comparative lightness of these weapons would permi of their being provided with an effective shield protection without reducing to any serious extent their property of mobility; besides, the additional weight of this shield would permit of a larger powder charge being used, with a corre sponding increase in initial velocity, accuracy, and power Three-pounder guns have been referred to, but six-pounder are also adapted for field service, by allowing them to recoi and automatically return to their original positions withou causing their carriages to run back.

Vermilion.-Its Manufacture in China.

The Chinaman has no knowledge whatever of chemistry, and of the principles of natural philosophy and statics gene rally bis notions are of the most rudimentary and primitive description. How then, in the face of these obvious disad vantages, have the Clinese contrived to place themselves in the front rank among nations in the matter of certain cbemical manufactures, one of the most important of which is the subject of this article-vermilion? In our last article we bave seen with what ingenuity and pertinacity in ca:ry ing out his ends the Cbinaman has succeeded in making perhaps the most delicate and perfect iron castings in the world.
He bas succeeded in that instance not by any deep re searches into the hidden mysteries of nature, by no process of thougbt involving an inquiry into the "reason why:" to this the Cbinaman is averse, the whole tendency of his edu cation, such as it is, tends to made bim satisfied with ob serving effects; it is sufficient to him to know that things are so, without going into troublesome or elaborate investi gations into those cbangeless laws of nature into whicb his philosophy teaches him that, as be cannot alter or control research, is fruitless; but that be bas in bis own small, in genious, patieut way observed effects to very good purpose the unrivaled excellence of some of his manufactures testifies. We will now enter a vermilion manufactory, and watch the process from the first stage of mixing its two in gredients-mercury and sulphur-to the final process of weigbing and packing this costly and beautiful pigment for the market.
The first objects to attract the visitor's attention on enter ing the yard attacbed to the works will probably be large piles or stacks of cbarcoal, crates or baskets of broken crockery ware, and numerous rusty old iron pans of some what similar shape to the rice pans previously described, but considerably thicker and beavier. Therewillalso probably be a lew broken and disused cast iron mortars. All these articles are the cast off or worn out implements of the manufacture, and will be described in their proper order. On entering the factory proper, scores of little stone mills, each being turned by one man, and otber long rows of workmen wtighing out and wrapping up the vermilion, will be seen

The furnaces ar may be ten or twelve in each furnace room, five or six on each side. After passing these the stores of quicksilver, sulpbur, alum, glue, new spare iron pans, serviceahle crockery ware, and sieves, and otber uten sils used in the factory are arrived at, and this completes the
view of the works. Tbe iron pans in which the vermilion view of the works. Tbe iron pans in which the vermilion is sublimed are those referred to above; they are circular and semi-spberical in shape; all are of the same size and weigbt; theyare cast upside down, and in the casting, a runner or lump of iron, two and tbree-eigbtbs incl in diameter by from six-eighths to one inch in depth, is purposely left on every pan, in order to enable the workman the more readil
to bandle the pan when stirring up its contents. The size to bandle the pan when stirring up its contents. The size
of the pans proved by actual measurement to be twenty-nine of the pans proved by actual measurement to be twenty-nine
and a quarter inches in diameter, by eight and seven-eigbths inches deep, and the weight forty catties, or say about fifty three pounds. Tbese pans are set in rows of five or six on eacb side of a small rectangular ronm, iu size some twelve
feet by fifteen feet; the door of this room is of wood, and contains an aperture a few inches square in order to enable the workman to watcb the progress of bis operation, from time to time, without the necessity of lowering the temperature of the apartment by opening the door. The pans are set in brickwork, each pan baving beneatb it a grate to hold the charcoal used as fuel. There is no communication be tween the grates or furnaces under each pan, and no chim ney, the fiames and products of combustion finding exit from the front of the grate, which is left wholly open at all stages of the operation.
The process of manufacture is as follows: Taking an iron pan, which is of four incbes smaller diameter than those described, and also in all other respects proportionately less, except the runner, which is the same size, a skilled workman proceeds to weigh out seventeen and one-third pounds of sulpbur. This be places in the pan, and adds about balf the contents of a bottle of quicksilver. The pan with its contents is tben put upon a small earthen brazier or portable furnace, the fuel used in which is charcoal. When the sulpbur is sufficiently melted, the workman, taking an iron spatula or stirrer, rapidly stirs up the quicksilver with the sulpbur, and gradually adds the remaining contents of the bottle of quicksilver, stirring the two ingredients together meanwhile until tbe mercury bas wholly disappeared, or "been killed," as the Cbinese put it. When this takes place tbe pan is removed from the fire, a small quantity of wate is added, and rapidly stirred up with the contents of the pan, which have now assumed a dark tlond-red appearance and semi-crystalline structure.
This mass is then turned out of the pan into an iron mor tar, and then broken up into a coarse powder. This forms a charge for one of the large pans previously described, and when sufficient material has been prepared to charge all the pans in one furnace chamber the sublimation is proceeded with as follows: All the pans baving received tbeir quantum of crude vermilion, this is covered with a number of crockery or purcelain ware plates of tnugb, strong manufacture, each about eight inches in diameter; some of these plates, however, are broken up, and are in a more or less fragmentary
condition. When these plates bave been piled up into a dome-sbaped heap of the same shape as the bottom of the
upper pan, to which they should extend, the whole is cov ered with one of the smaller pans previously described. Now, it will be remembered than the smaller pan was of four inches less diameter than the larger one; there will conse quently be a circular space of
Consequently the rim of the upper or covering pan will be about two inches lower than the rim of the lower pan there will also be some four inches space borizontally be tween the rim of the larger iower pan and that portion of
the smaller pan which is at the same height as the rim of the the smaller pan which is at the same height as the rim of the larger one. Tbisspace is carefully filled with a clay luting into which some holes, generally about four in number, ar pierced, extending down to the rim of the smaller pan o cover; this is done in order to allow the heated air and other matters to escape. All the pans in one furnace chamber be ing thus charged and covered, the fires are lighted. Tbe flames from the charcoal should occasionally play severa feet above the moutbs of the furnaces. The door of the chamber is kept closed, except wheu it is opened for a mo ment in order to enable the workman to replenish the fires, which must be kept up at a fierce heat for eighteen hours During the process a blue lambent fiame is seen to play above each of the iour holes which are pierced througb the clay luting of the pans, so it is evident that a considerable quan ty of either one or probably boll the irgredients is wasted After eigbteen bours the fires are allowed to go out, and the contents of the pan cool down. When this is accom plished, the greater portion of the vermilion will be found adhering to the lower surface of the broken up porcelain plates with which the crude product is covered. The vermilion is then carefully removed from the porcelain by means o
chisels, and is now ready for the elutriatiug mills. Anothe chisels, and is now ready for the elutriatitg ins. ing to the upper iron pan and that obtained by washing the clay luting in a cradle, as diggers wash dirt for gold. This together with the wipings and scrapings generally is mixed up with alum and glue water into cakes, and, after drying on a brick surface leated beneath by means of wood or charcoal, is powdered up on a mortar, and resublimed when a sufficient quantity bas accumulated.
The vermilion which was removed from the porcelain plates is of a blood red color and crystalline structure. This is then powdered up in a mortar and removed to the levigating mills; these are the ordinary little horizontal stone mills used by Cbinese and otber natives of the East to grind rice and otber grain into fiour or pulp, as the case may be. Each stone is about two and a balf feet in diameter; the lower stone is stationary, the upper is turned by a direct-acting piece of wood having a hole in it, which works a wooden peg affixed to the upper stone, which is made to revolve by a backward and forward movement of the piece of wood, or handle, some tbree or feet long, previously mentioned. One man turns each mill. The upper stone has a small hole in itnear its center, down which the workman from timeto time pours a little spoonful of the powdered vermilion, which he washes down into the mill with water; as he turns the mill the workman keeps continually ladling little spoonfuls of water down the aperture or hole in the upper stone; the ground and thus elutriated vermilion, as it escapes from be tween the stones, is wasbed down by the water into a vessel placed beneath to receive it.
Wben work is suspended for the evening, the ground vermilion is carefully stirred up with a solution of glue and alumin water, in the proportion of about an ounce of eacb to the gallon. The glue bas been made to mix with the water by previously heating it with a small quantity of water; the earthen pots in which tbis process is effected each hold about six gallons. The mixture is then left to settle. In the following morning the mixture of glue and alum is poured off the vermilion, and the upper portion of the cake of vermilion at the bottom of the vessel-tbat is, the portion which remained longest suspended in the liquid-will be found to be in a much finer state of subdivision tban the lower portion, whicb requires to be again elutriated as on the previous day; this separation of the more finely divided vermilion from that whicb was coarser by suspeusion in a dense medium, is a really most ingenious process, for which we slould give the C'binamen every credit.
The process of grinding, elutriation, and separation of the coarsely ground from the fine vermilion sometimes requires to be several times repeated, in order to fully bring out the color. As a final process the damp cake of finely ground vermilion is stirred up witb clean water, and allowed to settle down until the next morning, when the water is carefully poured off iuto large wooden vats to still further de posit a small quantity of vermilion still remaining in suspension, and the vermilion dried in the open air on the roof of the premises. When quite dried the cakes of now full col olored pigment are carefully powdered and sifted by means of square muslin bottomed sieves, containedin a covered box some two feet ligh by two and a balf wide, in whicb the
sieves, which slide on a framework inside the box, are jerkek backward and forward by means of a bandle on the out side of the box or case containing them.

The now fully prepared vermilion is removed to the pack ing house, wbere may be seen rows of workmen, men and boys, seated before a series of tables. Between every two workmen is third, with a small pair of scales, which he bolds in his left hand; and as the workmen on either side place before him the little pieces of paper in which the ver-
milion is to be wrapped up, be weighs into each paper one milion is to be wrapped up, be weighs into each paper one
tael (about an ounce and a third avoirdupois) weight of ver-
milion; the papers are two in number, the inner a black or prepared paper and tbe outer a piece of ordinary white paper. After being wrapped up the packets are placed in rows before another workman, who stamps them with a seal containing iu Clinese characters the name and address of the manufactory in which the article bas been made, and the quantity and quality of vermilion contained in the packet.
The rapidity and deftness of the Cbinese workmen at tbis employment is really surprising; the stampiug, for instance, is effected at the average rate of sixty impressions per mi nute, and the wrapping up is carried on $w i t h$ proportionate rapidity. Tbe misture of alum, which is the ordinary aluminum potassium sulphate, with the vermilion, in one of its stages of manufacture as described above, is not added, as at first sight we thought it might be, merely to assist in clarifying or purifying tbe water by causing it to deposit is sediment, but seems to bave some peculiar effect upon the color. Slthough what may be the rationale of the proctss, or bow it acts, we cannot quite clearly see; the glue is added as described above merely to favor separation of the finely elutriated vermilion by holding it longer in suspension than the coarser particles, which sink first, and may therefore be separated in their order of stratification.
Tbe actual composition of vermilion is oue hundred parts of mercury to sixteen of sulphur, when both these ingredients are in a perfectly pure state; the excess of five and onethird pounds of sulpbur added by the Chinese is probably volatilized and lost in the process of sublimation, or as the sulphur used is generally not quite pure, a part may go for foreign matter contained in the sulphur; the balance being probably the raison d'etre of the blue lambent flame seeu playing over the apertures in the luting during the sublimation process. For a people, having like the Chinese no acquaintance with even the first rudiments of chemistry, the proportion of ingredients taken-fifty-six and one-quarthe proportion of ingredients taken-fifty-six and one-quar-
ter catties to 13 catties, or say 75 pounds to 17 and one-third pounds-shows wonderfully accurate powers of observation and a knowledge of com lining proportions only to be gained by much experience and a long extended series of carelul observations higbly creditable to the manufacturers. The entire process is one of the most ingenious and interesting to be seen in any part of the world
Hong Kong, March 29, 1884.
-T. 1. B., Chem. Neros.

Mounting Prints on Muslin.

At a recent meeting of the Rochester Photographic Society, Mr. J. M. Fox gave the following account of bis method of mounting prints on cloth. He said:

After trying many experiments in double mounting on muslin I haveaciopted the following method: I prepare seve ral yards of cloth at a time by sizing with starch, and always keep a roll of it on hand ready for use. While damp the cloth is stretched not too tigbtly on a frame, and sized plentifully with warm starch paste made rather thin, and spread on evenly. Where large quantities of muslin are used, perbaps tenter bars might be employed to advantage for stretcbing. When dry cloth is cut to the size required before mounting, allowance being made for the expansion of the prints, if the starch for mounting be used while warm (which I think is preferable), it should be as stiff as can be conveniently spread on the print, for the reason that it will expand the cloth less and dry quicker. From the moment the first print toucbes the cloth dispatch is important; there fore both prints are first pasted, one being laid aside ready to be picked up quickly. The first print is rubbed down with a hand roller, which can be done more expeditiously than with the hands. When the second print is properly laid on the side there is less occasion for laste, and rubbing down by hand is preferable; because, althougb the roller does the work perfectly on the first print mounted, it is liable to leave air bubbles in rolling down the second one. To avoid leave air bubbles in rolling down the second one. To avoid
bubles in the band rubbing, the strokes should be toward the middle of the print, and not in every direction from the center. When the mounting is completed, the prints are placed between papers and covered immediately with several folds of cloth of sufficient weight to keep them in place. To facilitate drying they may be aired after an hour or two and placed between dry papers and again covered with the cloth."

A Mischievous Toy.
On each side of 108 Sth St., between Third and Lexington Avenues, this city, is a row of new flats. The row on the south side is almost completed, but a very large number of the whole glass windows bave been sbattered. The bole in the glass is generally small and round, with fractures extending in all directions.
"The boys do it with what is just now the most popular toy Harlem ever saw," said a policeman in Lexington Avenue. "The toy is made like the stock of a gun. A short, bollow, wooden cylinder fits into the channel of the gun stock and is secured near the muzzle of the stock hy a stout rubber cord. When this cylinder is pulled back to the position a gun lock would occupy, it is caugbt on a trigger. The boys put a lead bullet into the little cylinder, aim at a window a square away, and pull the trigger. A jingle follows every time. Sparrows and cats even have been killed by the bullets. It bas been impossible so far to catch the boys in the mischief, because there is nothing to tell where the shot comes from. Unless we are lucky enough to see some of them in the act, we will probably not be able to stop the destruction."

