## A PROJEGT FOR THE REORGANIZATION OF THE ARMY

The intelligent observer from the other side of the ocean bas often, upon his return home, recorded his surprise that a nation of fifty millinns of people should suffer its seacoas defenses to fall into decay, its army to sink into insignifi cance, and is fleet to lapse into the proportions of that of power of the fourth class. To the European mind, wedded as it is to the theory that peace is only secure when sustain ed by the power to make war, the idea that there is safety in disarmament is incomprehensible.
The superficial observer, as we know, ascribes the la mentable condition of both our military arms to the tem perament of the people themselves, who, to his mind, are oo much absorbed in the race for wealth
This is, there is reason to believe, only in part true. Re cent events have shown that, when the matter is set before the people in its true colors, when the necessity for certain military precautions is shown and the reason for armament explitined, they are quick to realize it. Hence it was that the scheme to impruve the naval service and, above all, to manufacture beavy rifled steel guns for coast defense, was recently set alloat. Little, however, has been said about the army, notwithstanding the words of warning uttered by its late retiring chicf. Witha view of obtaining plans for the thorough renrganization of the military arm, the Mili tary Service Institute recently offered a prize. The successful essay was contributed by Lieut. Arthur L. Wagner, SixtlJ U. S. Infantry. It is a concise statement of the militaty necessities of the United States, and, since it has been sanctioned hy the best military authorities, may be looked upon as a correct estimate of our requirements.
The general plan outlined by Lieut. Wagner is the organization of what might be called the nucleus of an effective army, which, in time of war, could be readily expanded into a much larger body of trained fighting men, supported by a militia organization practically trained in the most miaute details of the school of the soldier. He would have the peace establishment at 27,501 officers and enlisted men, which on a war footing should be raised to 56,356 . First and primarily he would have each arm of the service-artillery cavalry, and infantry-armed and equipped with the most efficient weapons and accouterments. The fleld artillery should he provided with Gatling and rifled guns, and so drilled that they could work quickly enough to operate at a moment's notice, even on an advance skirmish line; the gunners being protected by shields from the attacks of sharpshooters. He is sustained by the best modern authorities when he claims that cavalry, to be most effective, should fight afoot save upon those rare occasions when a
sudden dash on an exposed flank or the like should be required of them. The saber, he thinks, ought not be dis carded, but the principal weapon of the trooper should be an improved magazine rifle.
One of the most interesting features of Licut. Wagner's paper will be found to be the description of a model natioual reserve, composed of a battalion from each congressional district in the country. This reserve, composed of the same material as the present militia, should be partly equipped by
the Governmen t , and be instructed under the personal supervision of army officers detailed for the purpose. It would cunsist entirely of infantry and beavy artillery, the latter bcing limited to companies and battalions in the seacoast cities, drilling usually as infantry, but at times serving the great guns mounted in the neighboring fortifications.
As a whole, this paper of Lieut. Wagner's will commend : itsclf not only to the soldier, but to the people themselves; for, while providing for a powerful military organization, by far the greater portion of the power is arranged to
wielded by the people themselves, who are sovereign.

## SHAFTS AND BELTS.

In many cases the shafting is too light for the weight put upun it and the strain to which it is subjected. In many cases the hearings are too far apart to properly sustain the load when in motion. In many cases the directions of the bells are either absolutely improper or relatively wrong.
Recently much trouble was caused by the heating and rapid wearing out of the boxes on the receiving length of a mai! countershaft in an establishment which occupied a four stıry building. The length of shaft, which was only two inches diameter, was replaced by one of two inches and three-eighths, but the trouble still continucd. Between two hangeis, a little over eight feet apart, were hung pulleys, the aggregate weight of which could ont have been lessthan six hundred pounds. The main driving belt, twelve inches
wide on a six foot pulley, ran directly up and down-vertiwitle on a six foot pulley, ran directly up and dewn-verti
cally-and every other belt pulled in one direction. The cally-and every other belt pulled in one direction. The
nain belt that ran vertically weighed about two hundred pounds. With these data the intelligent mill wright or other mechanic can readily see that economical running was impossible
Objection is malle $t$ shafting, stiff enough to bear the load and strain, on account of its weight. This might be remedied in a great measure by substituting hollow for solid shatiing. This subject was treated definitely in the SCIENTIFIC AMERI Can of May 12, 1883, under the headirg "The Load of
Shafting," showing that the change was enti ely feasible. Shafting, showing that the change was entir ely feasible.
Part of this objection might be removed, also, by suffici ently supporting the sbaft, as it is evident that a shaft will ruo with less friction when running perfectly straight and level than when running on the "dnuble wabble" princi ple: at least no deflection out of a direct line should be per-
mitted on a shaft at any place in its entire length. Even if bis deflection is not apparent to the eye, it can
by holding the finger against a shaft in motion.
The direction of belts is a subject that is not usually su ficiently considered. If a belt is hung to run vertically it entire weight is upon the upper shaft, and it must be kept
so tight as to take up the sag of its weight, which causes it so tight as to take up the sag of its weight, which causes it ;
to fall off from the bottom of the lower pulley. If a belt must run vertically, let the lower pulley be as much larger than the upper one as possible, so that the belt can have a bearing on its sides. Under no circumstances allow the lower pulley to be smaller than the upper one; it is best al ways in leading from a lower to an upper shaft, or vice versa, to give the belt an angle; the best running belts are those which run horizontally.
Never have the pull of the belts all on one side of the shaft; it is unnecessary to point out the reasons why. The pull of belts should be as equally distributed relatively as possiblc.
It is an easy matter to ascertain the proper position of the bearings of a shaft relative to its weight before the hangers
are placed and the shaft hung. Place the bare shaft on boxes on movable horses, the bearings being at the desired distance apart. Then load the length of shaft with the weighed or estimated load of pulleys, and notice any deflec tion. The load test need not be the actual weight, but only a relative portion. Rig a lever over the shaft midway between the bearings on the horses, one end of the lever to be
held by a rod bolted to the floor and the other end loaded. By estimating the difference (relative) between the fulcrum and the shaft and the slaft and the weight at the end of the lever, a comparatively easily handled weight can represent the total weight of the shaft, on the principle of the ordibary steam boiler safety valve lever. After testing the shaft by the actual weight of the pulleys and belts it has to carty add fifty per cent more for the sagging, swaying, and vibra ion of the belts in motion, and when tiis total weight can he sustained without deflection, the position of your bearings is determined.

## POISONING FROM GALVANIZED IRON.

No questions can by possibility be of more intense interest than those which relate to the means of supplying pure water for use in our cities and towns. All the drift of modern re spread through the agency of drinking water more energeti cally than in any other mode. But of what use is it to search with diligence for a pure source of supply, if in the process of transmission to the consumer the water is to ab orb that which shall carry with it death, or at least the seeds of ill health? The mode of distribution becomes therefore of equal importance with the source of supply.
With the primary conduits, channels of brick orstone, and street mains of iron, there seems to be no occasion to find fault. Pure watering entering them will be delivered pure. The practical danger must come, if it comes at all, in the smaller distributing pipes, the house service. For his purpose three metals are in use in all our cities-lead, iron, and galvanized iron, the latter being really zinc. With the two former we do not propose at present to deal; but inasmuchas recently attention hasbeen publicly drawn,to cases
of supposed poisisning from drinking water which has passed through pipes of galvanized ion, it is worth while to look to the matter closely. We bave been accustomed to believe that galvanized iron was a perfectly safe materia!; if it is
fact.
The first question for us is, What are the chemical possi- $^{\text {a }}$ bilities involved? We are to take the case only of water wiich is supposed to be sufficiently pure for drinking, thus necessarily excluding that which is to any perceptible degree brackish. We have not, therefore, to suspect the presence of chlorine or of alkalies in sufficient proportion to have any appreciable effect. Neither can we have to deal with any organic acids. The water, of course, carries with it free air, whose oxygen is a powetful agent, and we bave thus the means of forming zinc oxide constantly present. But the oxide of zinc is as insoluble in water as the metal itself, and as an oxide we may discard it from the question. And it would seem then that a galvanized iron pipe of any length ought to deliver the water as pure as it receives it.
And chemically speaking this is no doubt true. But another factor is involved, which can by no means be neglected; this is mechanical attrition.
That the galvanized pipes are constantly wasted by the water is certain; the zinc surface is destroyed, and accumulations in the pipes occur sometimes, almost choking them, but this is done apparently ouly by the force of the current cutting off and carrying with it either metallic zinc or the coating of oxide, two inert and innocuous sub tances.
Now if we could stop here our chemistry would surely carry us safe; but the very object for which we are bringing the water is that it may go into the stomachs of cousumers and here we encounter a new series of conditions.
The gastric follicles, called into special activity at every ct of digestion, develop an acid secretion. The precise naure of this is still a matter of dispute among physiologists, though all agree that it is either lactic acid or hydrochloric. Either one of these would at once dissolve zinc oxide or metallic zinc. Of the physiological action produced by zinc lactate we have no knowledge; but inasmuch as the two acids are so closely allied as to be distinguisbed with ${ }^{1}$ difficulty, it is reasonable $t^{\prime}$ infer that their sults would have
a corresponding resemblance, and the chloride we know abundant

Here then seems a real source of danger from water flow ing through galvanized iron pipes, and if really any injury has ever been produced by such water, it is doubtless in this manner that it has been done. But the remedy is plain and sure. The metal and the oxide are both insoluble, and cau surely be filtered out. If, therefore, the water could always be filtered no danger would ever occur, but unfortunately this is done in so few instances that the practical bearing of it is small. And we come then to the question, Is this evil, thusshown to be chemically possible, anything more than a mere matter of theory? Have we any pronf that poisoning has ever been produced by the use of the so-called galvanized, that is, zinc coated pipes?
We have examined with very great care all the account available, and so far we can find nothing to convince us that injury has ever occurred. Various reports have appeared of injurious effects, but none of them have been substantiat ed by satisfactory proofs. So many other causes of il bealth, even of sudden attacks simulating the effects of poison, are liable to be intervolved in almost every case that newspaper statements are to be received with extreme caution. And considering the small numbers of even thes hich have appeared in comparison with the countless my iads of those who are constantly using the water from zin pipes, we are fairly entitled to believe that practically no danger can be attributed to them, and that the public may rest satisfied to hold them safe and harmless, the amount of material presented for the chemical action in the stomach on which we have referred being in fact too insignificantly small to produce any result.

## The McCormick observatory.

At the recent meeting of the American Association, Professor Ormond Stune, director of the Leander McCormick observatory of the University of Virginia, gave an elaborat description of that observatory, now approaching comple tion, and to be devoted entirely to original research. The telcscope, which will soon be mounted, is the twin in size of the Washington twenty-six inch, and like it in most of its details, except the driving clock, which is like that of the Princeton twenty-three inch, with an auxiliary control by an outside clock, and that it has Burnham's micrometer illumination. The observatory has a permanent fund of seventy-six thousand dollars as a beginning; and eighteen thousand dollars have been expended in observatory build ings, and eight thousand dollars for the house of the direct or. Situated eight liundred and fifty feet above the sea, and on a hill three hundred feet above surroundings, the main building, circular in shape, is surmounted by a hemispheical dome forty-five feet in diameter. The brick walls have a bollow air space, with inward ventilation at bottom and outward at top.
Mr. Warner, the builder of the dome, gave an interesting description of the ingeninus method of adjusting the conical surfaces of the beariog wheels, so that they would, without guidance, follow the exact circumference of the tracks; aud then of the adjustment of the guide wheels, so that the axis of this cone should be exactly normal to the circular track. The framework of the dome consists of thirty-six light steel girders, the two central parallel ones allowing an opening six feet wide. The covering is of galvanized iron, each picce fitted in situ, and the strength of the frame is designed to stand a wind pressure of a hundred pounds per square foot. There are three equal npenings with independeut shutters, the first extending to the horizon, the second beyond the zenith, and the third so far that its center is op posite the division between the first and second. The shut ters are in double balves, opening on horizontal tracks, and connected by endless chain with compulsory parallel mo ion of the ends. The dome weighs twelve tons and a half, and the live ring one ton and a lalf; and a tangential pressure of about forty pounds, or eight pounds on the cndless rope, suffices to start it. If this ease of motion continues as the dome grow's old, it is certainly a remarkable piece of engineering work.

## Wells and Cholera.

The New York Board of Health condemns the use of water obtained from the artesian wells of the city, maintain ing that it is unfit for human use, and recommending that all the wells be immediately closed. Dr. Cyrus Edson. of the Board, says he does not believe there is one well in New York city that is safe, for the reason that the substrata beneath the city are contaminated in some degree by leakages from the sewers and other drainage. Paris can have good wells, because the watershed is 182 miles away, and London Las a like advantage. But the watershed of New York is the city itself situated right over the wells. The chief rea son urged for the closing of the weils is of course protection against disease, and especially against cholera. Dr. Edson is certain that in ninety-nine cases out of a hundred cholera get, into the human system through the germs in water used. The judgment of the intelligent gentlemen composing the Board of Health that the wells are really dangerous will justly carry great weight, especially in view of the possible arlvent of cholera bere. Those who have expended large sums in sinking wells for the supply of their buildings, the Insurance Critic thinks, will nalurally be reluctant to yield oo these conclusions. But all will admit that pul, lic health and safety siould be the guverning consideration.

