Brientific smeriram.

HSTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.

 published weekly at
No. 361 BROADWAY, NEW YORK.

o. D. MUNN.
A. e. Beach.

TELEMS FOR TRHE SCKINTIEIC AMERICAN. One cony, one year nostane included.
ne copy, six months postage included

ratis for every' at of tive subscribers at क्ष.20 each; additional coples

 me prodort' sate rate. Postage prepaid.Remit do oostal order. Address
franklin street, New York
The Scientific American Supplement
is a distinct paper from the SCIENTIFIC AMRRICAN. THE SUPPLEMENT is issuud weekly. Every number contains 16 octavo pages, uniform in size with SCI ENTific American. Terms of subscription for SUpplemeni,
85.00 a year, postage paid, to subscribers. Single copies, 10 cents. Sold by all news dealers throughout the countrs.
Combined IRates. - The SCIENTIFIC American and SUPpligment will be sent for one year postage free. on receipt of seven dollars. Both The sutest way to remit is by draft, postal order, or re
The satest way to remit is by draft, postal order, or registered letter.
Address MUNN \&CO., 361 Broad way, corner of Franklin street, New Yor
Scieatife American Export Edition.
The Sciwntipic american Export Edition is a larue and splendid peri$\begin{array}{ll}\text { dical, issued once a month. Each number ecntains } & \text { about (ine hundred } \\ \text { arge quarto pages, profusely illustrated. embracing : } & \text { (1.) Most of the }\end{array}$ platee and pages of the four preceding weekly issues of the SCINNTIFic American, with its splendid engravings and valuable information: (2.)
Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any nart of the world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large, and handsomely disp
nouncements published in this edition at a very moderate cost.
nouncements publisbed in this edition at a very moderate cost.
The Scientiric Am lilican Export Edition has a large guarauteed circ Intion in all commercial places throughout the world. Address MUNN
CO., 361 Broadway, corner of Franklin street, New York

NEW YORK, SATURDAY, SEPTEMBER 13, 1884.

REMOVAI.

The Scientific American Office is now located at 361 Broo. wway, cor. Franklin St.

Contents

Table of CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT

NO. 4.54,

For the Week ending September 13, 1884. Price 10 cents For sale by all newsdealer
 II. ENGINEERINGANDMECRANICS. -Improved Revolv

v. ARCHITECURE, A Country Honse.-With engraving.
VI. NATURAL HiJTory, Eduated Oxen.-With engraving: Sea sbels, and their inhabitan

X. MISCELLANEOUS.-The Red Δ fterdlow

THE INTERNATIONAL ELECTRICAL EXPOSITION.

 Elsewhere in this number will be found a description of the International Electrical Exposition, which opened last week in Pbiladelphia. As will be seen from this, the pro jectors of the enterprise have succeeded in collecting unde one roof, with few exceptions, all the important electrical apparatus of tbe day.Probably at no otber exbibition held in this country was foreign workmanship so readily distinguisbed from domestic. We are a practical people, and we are not always disinclined to boast of this praclicality, but as we look over the European exhibits in tbis exposilion, observe the nicety of the philosopbical apparatus aud instruments of precision, consider the carefully worked out theories and laws upon which they are constructed, and tben turn to our own ex bibits, confined as they are almost exclusively to practical applications, for money getting, it seems after all as though we had been better off were we not quite so practical, and foitered a little more in the paths of pure science.
The arc and incandescence lights of the various systems which ornament the pillars and hang in festoons from the walls have resulted from the application of laws discovered by Faraday and Oersted; and while the inventors of these applications have deservedly won no little fame and are credited with making a deal of money, the men without whose efforts such applications would have been impossible gained little of the former and scarcely enough of the latter to insure them a livelibood.
The principal objects sought by that admirable societs, he Franklin Institute, under the auspices of which the present exhibition is given might, perhaps, be fairly laia down as: 1st. To give the American electrician the opportunity to compare his work not only with the latest Euro pean models, but also with the handiwork of his fellow on this side the water. 2d. Toexhibit the excellence of Ameri can electrical applications
In regard to the first, it is well known that many practica and ingenious workmen are in the habit of keeping to them selves, for fear their ideas should be taken frem them. Tha this is, in great part, a mistake is well illustrated by the small number of really saccessful applications in electrical science comnared with the number of workmen that hav straggled tirelessly over what has not given nor is likely in he future to give much promise of success. These men, or some of them, are searching for that which is not or for tha which the interposition of a natural law prevents them from finding, at least in the manner they bave proposed to them elves.
The opportunity of seeing what has gone before, what bas already been done, and for mutual comparison of work, i likely to be of inestimable advantage, and the collection a one point, as at the present Electrical Exposition, of work ing models of the best construction up to date must, fo reasons so obvious as not to require demonstration, be of in alculable assistance to the struggling and ambitious elec trician and mechanician. As to what may be regarded as another principal reason for the exposition, viz., the exposure of domestic wares to a foreign audience interested in en erprises for which they are designed, much might also be said. Novelties require more than a casual introduction nto a new market. A supply will not always insure an immediate demand. There was no demand for India-rubber galoshes, but the practical demonstration of their usefulness begat a demand. The case of the telephone is a striking illustration of this. Though now known to be a commercial success in the broadest meaning of the term, its usefulness, speaking from a purely commercial standpnint, remained for a long time unrecognized abroad. More than fifty mil lion dollars had been invested in this country in the telephone plant ere it really went into general use abroad.
For these and other reasons the present exposition is likely to further the interests of American electricians, mechanics and manufacturers, and they bave reason to congratulate themselves that it was planned and is now being managed by so estimable a society as the Franklin Institute.

EMERY WHEELS.

The solid emery wheels have made possible a wonderful ${ }_{40}$ advance in the surfacing and polishing of metals in the shop, in truing centers, sharpening tools, and in other processes Yet in some cases they are not equal to the homemade whee for one reason-they become smaller by using, like the grindstone; and there are jobs where it is very desirable tbat the emery wheel should retain its original and uniform size. It is well, therefore, to give a few words of this al most forgotten shop lore

The emery wheel should be of soft wood-pine is to be preferred-made of alternate layers of boards planed to make α oor joints, put together with glue and screws, the grain crossing each alternate layer of boards, which should be not more than three-quarters of an inch thick; half inch boards are better. Make the wheel slightly thicker than it is to be when finished, as it is to be turned and trued on the sides as well as the face. With a band saw or gig saw in a lathe and bore and turn a hole and recess at the ent in a lathe, and bore and turn a hole and recess at the center to receive a disk, or gland, of iron that has been bored and faced up, baving screw holes in its flange. The hub of the gland should be seated in the wooden wheel. When the gland is in place and secured, the wheel is ready to be turned to finish. It is mounted on an arbor for this purpose. is therefore threaded

After turning to size, peg a belt or band of wet belt eather with shoe pegs to cover the rim of the wheel, flesh side of the belt outside. Tbis makes a bard wheel. If one with a yielding surface is desired, peg on layers of Canton (cotton) fannel to the requisite thickness, carrying them over the edges of the face to make a round edge. Cover the whole, not with leather, hut with strong denim or bed ticking, pegging or tacking it on the sides of the wheel. This makes a soft or stuffed wheel, which is for pol-shing-not grinding-and it will do work of a somewhat irregular form.
Brush the face of the wheel with hot glue, pass a round bar through the center, and roll the wheel in emery that is spread in a shallow trough or on a clean table. Any particles of iron or steel filings in your emery will make trouble; bave the table or trough perfectly clean. One coating of glue and emery is better than more, for when the outercoating is worn off the glue will glaze. Do not rap off any of the oose particles of emory until the wheel is perfectly dry; the reason is obvious: the undried glue will not hold the partiles in place.
When the wheel has been worn, the glue and emery is to be removed by soaking in water, and the facing repeated. If the use of these wheels is sufficient to warrant the trouble, it is well to have a trough of water in which two iron rolls revolve by power, the faces of the rolls far enough apart to allow an emery wheel to ride and roll between them, the shafts of the rolls to be connected at one end by gear wheels and an intermediate, so that they both turn in the same direction, and the emery wheel standing on its face will be slowly revolved by their combined action, the water in the trough being at a sufficient height to just wet tbe face of the wheel as it turns. This method prevents the whole wheel from being wet and warped. If this method is not feasible, repeated hand washings of the face must be made to soften the glue.

WHITE PINE ORNAMENTATION.

Some recent attempts with white pine appears to give it a value as an ornamental wood which its common uses have not heretofore suggested. The softness of its texture and its susceptibility to injury may have had some influence in preventing its general use for ornamental purposes, but the wood can be " filled," so that much of this objection is re moved. Its pure white color-white as compared witb other woods-recommends it for purposes for which holly bas been heretofore used; and the size of the timber from which clear lumber may be cut is greatly in its favor, boards of a width of sirteen and even twenty inches being not uncommon, with no shade of distinction between sap wood and heart, and only the faintest perceptible grain.
Some specimens lately examined show a greatly enhanced beauty hy very simple treatment-the filling with warm hellac varnish, bleached shellac in alcohol, applied with brush while warm. Several coats are given, the last coat being rubbed with pumice and rotten stone moistened with water, not oil. A finish of a flowing coat of copal varnis completes the preparation. Thus treated the wood is of a faint creamy tint with an appearance of semi-transparency Beautiful gradations of tone were obtained by panels of this prepared pine, mouldings of bolly, and stiles of curly or birdseye maple, and fine contrasts were made with the pine and oiled black walnut.
The pine is too soft for floors, but for doors, casings, and chamber furniture it seems to be admirably adanted. The nest specimens of the wood noted come from Michigan having fewer pitchy streaks and being of a more uniform color than the Maine product. Its ease of working by carv ng , and the coberence of it3 grain, are being utilized by masters and amateurs in interior wood decerations. A beau iful carved mantel relieved by pilasters of oiled black wal ut has been recently finisbed, which suggests the mellow ints of statuary marble after a sbort exposure to the atmo phere, while being free from the chilling sparkle aud sbeen of the marble.

Work of the British Association at Montreal.
After a most busy week, in which results were put on ecord of the recent work of a great number of savants in numerous departments of investigation, the Britisb Association for the Advancement of Science closed up the business of its first meeting in America, at Montreal, September 3. The number of papers read has been great, and the discus ions were always interesting, but tbere bave been no such wonderful discoveries announced or original tbeories ad vanced as stand out so prominently in the Transactions o be Britisb Association of many former years, as exemplitied n Bessemer's thrilling description of how to make steel from cast iron without fuel, Sir William Siemens' accounts of bis egenerative furnace and the Siemens-Martin modifications hereof, or of his bold advances in the field of electrica science, or the numerous and equally valuable contributions f Tyndall, Huxley, Sir William Thomson, and scores of thers. It would not be just, however, to assume that on this account the work done indicates any less keenness in cientific research. Great discoveries do not come at reguarly prescribed intervals, and perbaps the great amount of horough examination and careful study of the ground already traversed, which the numerous papers read before the several sections indicate, are only the necessary preliminary work in clearing the way for still more important ad

