

To Prevent the Oxidation of Iron．

One method consists in the addition of pig iron，when in a state of fusion，of from 2 to 10 per cent．of copper，tin，nickel，or antimo－ ny，by which addition，the iron is rendered more malleable and less subject to oxidation． A second method consists in the giving to the iron a coating of steel，or rather a species of iron containing less carbon and of course ap－ proaching to steel．This is effected by the ad－ dition of one part of blister steel to four parts of molten east iron，and then adding scrap iron to the mass，until an iron rod is no longer rendered brittleby being dipped in the mixture． With this compound，common iron is coated in the same manner as pursued in the case of cov－ ering iron with brass；but various methods are pursued，according to the size and nature of the article to be coated；where it is at the end of a bar of iron，such as an axle，and is to be of a particular form，this form may be given to the crucible，thereby making it a mould，and when in a state of perfect fusion，the iron， either previously heated or cold，is to be im－ mersed in the melted mass，and when it is per－ ceived that the mass is perfectly fluid，than the fire may be withdrawn，or the crucible be allowed to cool by any available means；but when the iron to be coated，is immersed cold the melted mass is immediately congealed，but it must be permitted to remain in the crucible till it again becomes fluid，and then it should be allowed to cool．If the whole is allowed to cool slowly，it is then soft，and may be turn－ ed in the lathe，and afterwards hardened by heating it and cooling it suddenly in the usual manner ；but in this case care must be taken as the coating and the iron have different pow－ ers of contracting．If the coated parts were suddenly immersed in water，it would certainly crack，the uncoated part must therefore be im－ mersed up to the coated part，when the con－ ducting power of the iron will cool the coating sufficiently quick to ensure a proper hardness． A third method of preventing oxidation，is by case－hardening the metal，by the use of the ferrocyanide of sodium，calcium or barium． In order to apply the ferrocyanide，an alka－ line bath，formed with carbonate of soda，or other alkali is used．This bath may be a cru－ cible or large basin built in the brickwork of the furnace，which should be a reverberatory furnace，and previous to being used，should be raised to a white heat；the iron to be case－
hardened requires to be previously heated to nearly a red－heat，and then immersed in the bath，and there raised to a heat sufficiently high，after which it must be immediately im mersed in the ferro－cyanide previously fused in another vessel；but if the quantity of iron to be case－hardened is small，it would not be advisable to fuse the ferro－cyanide（as it is very soon decomposed，）but immediately on taking it out of the bath it must be sprinkled with the ferro－cyanide；should ferro－cyanide of potassium be used，it is found that the alka－ line bath prevents effectively the corroding of the iron．

A fourth scheme consists of a method of coating copper，or the alloys of copper or iron， with platinum．Platinum is dissolved inaqua regix，and the iridium which remains undis－ solved as a black powder，separated by filtra－ tion，then evaporated to dryness，and when cold a quantity of caustic potass，equal in weight to the metallic platinum employed is to be dissolved in water，and poured on the chloride of platinum．This will precipitate the platinum of an impure yellow color；a quantity of solution of oxalic acid equal to the weight of the metalic platinum，is now to be added without pouring off the solution which remains on the preeipitate ；the solution is then to be boiled till the precipitate is on－ tirely dissolved，a small quantity of iridium will still remain，which，together with any other impurities，must be separated by filtra－ tion；caustic potass equal to twice the weigh of the metallic platinum is to be dissolved in water and added to the above．The solution is now ready for platinising the copper or iron article which is to be coated with platinum． Th article to be coated is to be put in a ves ${ }^{\text {Th }}$
sel of glass，or earthenware，and the above so lution is to be poured in，sufficient to cover it Iution is to be poured in，sufficient to cover it．
Itis then to be connected with the positive pole of a Daniel＇s or Bunsen＇s battery of one or more pairs of plates，according to the size of the article to be coated，and a piece of plati－ num foil in connection with the negative pole is to be immersed in the solution．The depo－ sition of the platinum in a metallic state，on the surface of the metal article，immediately commences，and is to be continued till the re－ quired thickness is obtained．All these plans may be very well，but for common purpose they must render the iron far too expensive．

In the moulding of the various lengths of pipe that are required for use，one pattern is made to answer．Pipe patterns are generally made nine feet long，of which an appropriate number of lengths are cast，when more than nine feet of piping is required．But shorter lengths also are frequently wanted，when of course the full length of the pattern would not be proper．The moulding，therefore，is cut to the required length；in technical language， the pattern is cut in the sand．In such a case， some preparation is necessary to form a new bearing for the core．For this purpose，two semi－circular pieces of wood，of the diameters of the mould and the core respectively，are prigged together，end to end，as in fig． 12 ； and it is obvious that by placing the larger piece in the mould in each box，at correspond－ ing parts，and ramming fresh sand about the smaller，the bearing will be formed．In like manner，if the piece of pipe terminate in a flange，the flange having teen moulded in its place，a half flange of the same dimensions， with a half core－print on it，as at fig．13，is set into the mould，and the bearings for the core made up．Small perpendicular branches equired to be made upon pipes，are cast，eith－ Fig． 14.

er horizontally or vertically，as may best suit the form of the box．In the latter case，the branch pattern is set loose upon the pipe，pro－ jecting upwards between the ribs of the box， nd having been moulded，it is drawn out，and ts core set in upon the pipe core，and the whole covered in
Besides straight pipes，others have often to be cast of different forms，requiring peculiar treatment．In arrangements of pipe works there is usually a number of knees or bends in heir construction．These bends are usually cast separate from the straight portions of pipe，having facets upon them by which they may be afterwards joined to the pipes．The nnexed，fig．14，is a longitudinal section of square knes in a line of pipes，showing the me
thod of junction by spigot and facet．The erm spiget，it may se as well to observe，is ap plied to the small semi－circular ring upon the plain end of a pipe，（as may be seen in fig． 5 ；） acet denotes thecup mouth on the other end or receiving the spigot．There are usually patterns and core－boxes for pipe bends of the Fig． 15.

usual square－knee shape in which they are moulded in green sand．In the absence of patterns，however，for these and for other va－ rieties of short piping，they are swept $u p$ in am，the core within the＂thickness．＂
In this process，the first point is to have a evel iron plate set，upon which the work is to be done．Like patterns，the loam work is formed in two halves．The cores are executed in the first place，and when dried，the thick－vanity．
ness forming the exterior of the casting are not laid on．Fig． 15 represents the guage usu ally employed in forming small pipe work．As already said，the work is done in separate halves，for which purpose semi－circular cuts are made in the guage，of which one is small－ er than the other，being respectively the mea sures of the core，and of the additional thick－ ness．
For example，suppose the bend，figured at sketch 14 ，is to be constructed，a small square rod of iron is bent to the form of the knee， against and along the side of which the guage is moved．A quantity of loam being laid on the plate in the line of the pipe to be formed， the guage in its progress fashioning the loam to its own form．When the two half cores are in this manner swept up，they are well dried and blackwashed，after which the guage is in verted，and additional loam being laid on for thickness，it is likewise shaped to the form of the pipe．The junction of the body of the pipe and the facet，which are of different diameters and of course require different sweeps，is scra－ ped out by a file when the loam is dried ；the head on the end of the facet is either formed by a pattern applied to the moulding．or cut out of the cope．
The loam pattern being thus completed in two halves，dried and blackened，it is bound together at two or three places by iron wire，

Fig． 16.

and bedded half inte a sufficient quantity of old loam mixed with water and laid over the iron plate．The boundary of the loam is built up with fragments of cake loam．The bed be－ ing smoothed off on each side and dried，a lay－ er of the same watered loam is applied to cov－ er in the upper half of the pattern．As this upper layer has afterwards to be lifted whole， it requires to be strengthened by the addition of irons．With this view，pieces of rod iron， accommodatad to the form of the moulding are laid on among the wet loam tranversely and longitudinally，and bound together by wires at the angles，constituting a kind of skeleton frame－work，fig．16，for the cope，as it is term－ ed，or upper structure．The irons are then coveresl in with old loam，which is smoothed over them，and the whole is for the last time horoughly dried．
The building of the work being now com－ pleted，the next step is to undo it to clear out the thickness．The cope is lifted off careful－ ly，leaving the rest of the work behind it，and this complete separation of the parts is one object for which the blackened or charcoal water is applied．In the same way the pat－ ern is lifted out from the bed of the moulding

Fig． 17.

The thickness is easily broken off the core eaving the latter entire；the halves of which are next bound by wire，and replaced in the mould，stayed by bearings at the ends，and by teeples intermediately．The cope is replaced， guided to its former situation by intentional ir－ regularities on the junction surface，and is bound by wires laying hold of the skeleton，to he under plate．
The gate is formed in the usual manner by pin stuck in the cope while being formed． For some small pipes，such as bends which are uniformly circular，circular iron－plates are frequently made to the same centre on both sides，so that when the cores are swept up on them，they lie concentric with each other．The dges of the plate will therefore serve for guides in the making of the core．For this purpose the guages are made as in figure 17，having a piece of wood nailed on and projecting down－ wards．By sliding this gauge along the inte ior or exterior edge，as it may be adapted for them，the pipe is formed as before．

Let not the moments of our life be spent in vanity．

Iron Convention．

The great convention of the iron makers which is to assemble at Pittsburgh in Novem ber，promises to be one of much interest and importance．The design of the convention is to ascertain the number and capabilities of the iron furnaces in the United States，and their present condition－together with the his－ tory of their operations for the past ten years， including the quantity of iron made，aggregat and cost of labor，yearly sales and nett pro fits，the annual consumption and actual cost at the several fumaces of agricultural pro－ ducts，and the quantity of iron that each fur nace could make，and the number of hands it could advantageously employ if managed pru－ dently，and furnished with a ready market at reasonable prices．If the convention should b fully attended and the delegates are pre－ pared to report honestly and accurately on all these and kindred topics，the report will be an exceedingly valuable document，and the meet－ ings of the convention may prove of great ser－ vice to the immense and invaluable mining in－ terests of our country．

LITERARY NOTICES．

Ranlett＇s Architect．－This great work，devoted to Domestio and Ornamental Cotrages，together with Landscape Gardening，is now complete in twenty prehensive and useful work of the kind ever issued， and constitutes at onee a practical guide for the erec－ tion of the best styles of country and suburban dwel－ lings of every description，from the cheapest cottage to the most elaborate and expensive ornamental villa． The ground plans are all drawn to scale，accompanied by specifications and estimates of the cost of mate－ tor to arrive at the cost of every plan the contrac－ his consideration．The want of such a work has been long felt，and Mr．Ranlett has done himself greatere－ dit，in supplying the vacuity which has so long exist－ ed in the publications devoted to Architecture．Its influence must be strongly felt throughout the coun－ rry，especially in the great West，where cities and villages spring up as by magic．Aside from its va－ uable illustrations，plans，etc，the work contains se－ veral historical shetches of difierent styles，and es－ and water ；also，on contracting workmanship．The wo volumes contain over 100 plates，many of which are beautifully tinted．
Bound volumes are worth $\$ 6$ each，or 50 cents per number ：－can be ordered from this office．

O INVENTORS AND ME． FIFTH YEAR OF The Best

Mechanical Paper

 IN THE WORLDA New Volume of the

SCIENTIFIC AMERICAN

 is commenced about the 20th of Sept．eachy ear，and isthe best paper for Mechanics and inventors published in the world．

Each volume contains 416 pages of most valuab eading matter，and is illustrated with over EOO MECHANICAL ENGRAVINGS

 NEW INVENTIONSTF The Scientific American is a Weekly Journal of
Art，Science and Mechanics，having for its obiet the
dvancement of the INTERESTS OF ME CHANICS Art Science and Mechanics，having or or its obiect the
advancement of the INTERESTS OF ME CHANICS，
MANUFACTURERS and INVENTORS．EEachnum－ MANUFACTURERRS and INVENTORS．Eachnum－
ber is illugtrated with from five te TEr origin EN－
GRAVINGS OF NEW MECHANICAL INVVEN．
TIONS，nearl ail TIONS，nearly all of the best inventions which are
patented at Washington being illustrated in the Sci－
entific American．It also contains a Weekly List of American Patents；notices of the progress of all Me－
chanical and Scientific Improvements；practical di－ reetions an the construction managoment and use of
all kinds of MACHINERY，TOOLS，\＆c．\＆c． It is printed with new type on beautiful paper，and
 listrated with upwards of 500 mechanical engravings．
TERMS：Singio subscription，$\$ 2$ a year in advance；
for six months． \＄1 for six months．Those who wish to subscribe ha
only to enclose the amount in a letter，directed to Publishers of the Scientific American，
128 Futiton
treet，New York． All Letters must be Post Paid．

A PRESENT：
To any person who will send us Three Subscribers，
We will present a oopy of the pATE

