## 

Dyeing Blue．—Dissolve one part of indig in four parts of concentrated muriatic acid ；to the solution add one part of dry carbonate of potash，and then dilute it with eight times its weight of water．The cloth or yarn must be boiled for an hour in a solution containing five parts of alum and three of tartar for every thirty－ two parts of cloth or yarn．It is then to be thrown into a water bath previously prepared， containing a greater or smaller．proportion of diluted sulphate of indigo，according to the shade which the material is intended to receive In this bath it must be boiled till it has acquir ed the wished for color．
To Dye Yellow．－Wool may be dyed yel－ low by the following process：let it be boiled for an hour with one－sixth of its weight of alum dissolved in water as a mordant．It is then to be plunged，without being rinsed，in a bath of warm water，containing as much quercitron bark as equals the weight of the alum employ－ ed as a mordant．Turn the cloth through the boilingliquid till it has acquired the intended color．Then stir in one－hundreth part of the weight of cloth of powdered chalk，and oon－ tinue the boiling eight or ten minutes longer For a Bright Orange or Yellow Color，the oxide of tin must be used as the mordant．To make it a bright yellow，a little alum must be used with the tin．If a little beadded，it will give the yellow a delicate shade．
To Dye Blacr．－Boil the wool，cloth，or yarn two hours in a decotion of nut－galls；af－ terwards keep it two hours more in a bath， composed of logwood and sulphate of iron kept at a scalding not boiling heat．During the operation the material must be frequently taken out and exposed to the air．The pro－ portions are five parts sulphate of iron，thirty parts logwood for every one－hundred parts of cloth，yarn，or wool．A little acetate of copper added to the sulphate of iron improves the co－ lor．
［We select the above receipts from the Lou－ isville Journal，which copies them from the North American Farmer．As they will no doubt have a wide circulation，we would like to correct the errors in them，as they may lead to expense，waste and immediate injury，both to stuffis and cloth． 1 st－To dye blue，never use muriatic acid，it will destroy the colori g qualities of the indigo，and make a dirty green－ ish black liquor．The proper acid is good sul phuric－and don＇t use any potash，and the blue can be dyed without the tartar or alum． It is at best a fugitive color．For farmers the old fashioned way for wool is the best．The above will not dye cotton，but the sulphate of indigo dyes silk，and does well to renovate rib－ bons，\＆c．
2nd－By scalding with boiling water，some quercitron bark，and then using the clear，boil－ i g it with some of the muriate of tin in a clean tin or copper kettle，a beautiful yellow will be dyed on flannel or cotton，and by add－ ing a little tartar and ground cochineal，a beautiful salmon color，or an orange color，will be produced．
3rd－If persons want to spoil their cloth， they will dye it black，as above directed．In dyeing black first boil the woollen cloth in two ounces of copperas to the pound of wool，along with a very minute quantity of sumach．This is done for an hour，when the cloth is taken out，dried and then boiled in a solution of log－ wood，at the rate of four or five ounces to the pound．This is boiled for one hour，and a good black is produced．If the color is grey， it wants more logwood－for some is very bad； if too brown，it has too much logwood in it， and it has to be removed by washing the cloth well first，and then ru ning them through a weak acidulous liquor，such as a little sulphu－ ric acid in water．They must be well washed after this．
Of the many receipts published for the bene－ fit of our farmers，we are sorry to say，that we can now and then only find a correct one． Lquid Hydrogen aas．
凹
Mr．E．Brown，of Preston，Eng．，has dis－ liquid．This discery of reducing hydrogen gas to a liquid．This discovery may be of great im－
portance to ærial navigators．A paper on the subject is soon to be presented to the Royal Society．

## Hollow Iron Moulding ［Continued from page 40．］

［Continued from page 40．］
A core－bar for a pipe of any given inside di－ ameter is selected two or three inches less in diameter，with the view of providing for hay rope and loam，by which the core is made up to the necessary thickness．The loam，which open as practicable by augmenting the usual proportion of sharp sand in its composition． The hay，also，which is simply twisted into ropes to facilitate its application to the core，
fulfils the important office of a conducting me－ fulfis the important office of a conducting me－
dium for the air forced through the loam，lead－ ing it from all parts of the surface to the vent Fio． 8.
holes in the core－bar．The method of apply ing the hay and the loam is simple．The core－ bar is rested by its pivots on two iron tresses， the upper edges of which are formed with cor－
responding semi－circular or triangular denta－ responding semi－circular or triangular denta－
tions，to receive the pivots．Thus placed，the core－bar is caused to revolve by a crank－han dle applied at one extremity，during which operation the rope is led on regularly along the bar from end to end，and fastened there． It must be tightly done，as any slackness in the rope will permit it to yield when subjected to the pressure of the iron，which has the ef fect at least of altering the form of the pipe， if，as in some cases，it does not break up the core and spoil the casting．Before finishing the core with loam，the hay receives a slight coating of it all over，as a cement to smooth down the surface．This being dried，for the ucceeding application of the loam，a loam board is necessary．This is a board of suffi cient length to rest upon the tresses which support the core．Along this board is laid the loam intended to form the core．The edge of the board is cut exactly to the form of the Fig． 9.

core，being，indeed，a half－skeleton reversed This board being then set along－side the bar and weighted down at the extremities，at distance of the half diameter of the pipe from the centre，it is evident that，as the core－bar revolves，and the loam is pushed over upon it， there will ultimately be formed a coating of oam completely enveloping the coat of hay， which shall also possess the figure of the core， Fig． 8 shows the loam board employed in onstructing the core of the pipe，（fig．6－see last number．）It will be observed to follow the outline of the core．Fig．9，in like manner，
epresents the loam－board that would be re－ quired to form the pipe itself，（fig．5，）were there no wood pattern of it．In such a case an additional coat of loam is run by means of it upon the core．（fig．6．）In this way，it is evident，a loam pattern is at once formed．In setting the board，the parts A A，fig．9，will apply to the same parts，（A A，fig．6），which，
in so far，serve for a guage．The misplacing of in so far，serve for a guage．The misplacing of
them exactly opposite each other is to be guard－ ed against，as there is not the same security

for their being correctly placed．Before receiv ing，however，the addditional thickness，the core must be washed over the surface with charcoal and water，that the thickness may be easily separable afterwards，and also tho－ roughly dried in the stove．In the meantime， havi $g$ finished and dried the loam pattern，it receives in like manner a wash with charcoal
water，and is ready to be moulded．This be＿ ing done in the usual manner，the thickness is peeled off，and the naked core replaced in the mould．To aid the stiffness of the core， steeples are planted here and there over the
surface of the mould．Fig． 10 is a cross sec－
tion of the body of the core．There are three concentric piles－the inmost，which is the core－ bar，with several vent－holes in section，and the cross－knee at the end ；the next is the hay， and the external coat is the loam．Fig． 11 is a sketch of one of the iron tresses used in the rork．
All wood patterns of pipes are constructed in two halves，which have two or more pins in the one entering corresponding recesses in the other，to prevent their shifting when put toge ther and moulded．In proceeding to mould a pipe，a laying－down board is usually employed which is simply a straight piece of wood as ong and as wide as the moulding－box．Upon this board one half of the pipe is laid with the flat side down，the box is placed over it and rammed；the whole is inverted，and the board lifted off．The remaining half of the pipe is set upon the imbedded half，and the upper box over it，and linked to the under one；the upper box being rammed，the patterns are oosened，as we have in other parts described， and longitudinally also by blows upon the ends．The boxes being parted，the patterns removed，and the moulding blackwashed with blackening，the core is set in，and the box clo－ sed．Small pipes，when there are several to be cast，are usually moulded in pairs in one box， when green sand is employed as a moulding material．The metal is poured in at one en trance，which branches to each moulding hortly after which streams of aqueous vapo mixed with hydrogen and other gases，arising rom the imperfect combustion of the charcoal and hay，are expelled from the extremities of he core－bars，sometimes resolving themselves into luminous jets．Soon after the metal is poured，the castings are turned out to cool after which the core－bars are drawn from them which is a comparatively easy task，as the hay has been for the most part consumed，and of course occupies less bulk．Long small rods of iron are next introduced，with scrapers formed on the ends of them，and are drawn from end o end，to clear the interior of the pipe of the remains of the core．

## Choloretic Discovery．

Th London Medical Gazette states that a $m$ st important discovery has just been made known by certain Doctors Snow，Budd and Brittan，and other celebrated physicians，res pecting the cholera．They have prepared a very long report，which will soon be published， in which they show that the cause of malig－ nant cholera is＂a living organism of distinct species．＂Dr．Budd procured water from dif－ ferent parts of London，and detected organism in great numbers in every specimen of drinking water．He states，in a long letter to the Lon－ don Times，that this orga ism is of the fu gus tribe，and is taken，by the act of swallowing， into the intestinal canal，and there becomes infinitely multiplied by the self－propagation pressure and propagation of these organisms， and the action they exert，are the cause of the peculiar flux which is characteristic of malig－ nant cholera．These organisms are dissemi－ nated in the air，in the shape of impalpable particles，in contact with articles of food，and principally in the drinking water of infected places．The evidence on which these conclu－ sions are founded，has been placed in the hands of the President of the College of Physicians， and will shortly be made known to the world for the benefit of mankind．
There have been so much said about this and that discovery，relative to the cause of cholera，that we have become quite skeptical about reported new discoveries．

## Linseed O11．

This oil is obtained in its greatest purity by cold pressure，but by a steam heat of about $200^{\circ}$ Fahr．，a very good oil may be extracted． The usual method is to torrefy the seeds in or－ der to destroy the mucilage，to bruise，and then submit them to pressure．The oil is of a green－ ish yellow color，and has an odor peculiar to itself．It is siccative especially when boiled with litharge，becoming then reddish and clear after repose．It dissolves in five parts of boil－ ing and forty of cold alcohol，and in 1.6 parts of ether．When kept for some time in a par－ tially open cask，and in a cool place，it depo－
sits a portion of its cold constituent along with a brown powder．
$\underset{\text { Tam－Tam．}}{\sim}$
It is remarkable that copper possesses pro－ perties，in respect to its hardening and tem－ pering，which are the opposite of those of cast ron and steel ：when cooled slowly，it be－ comes hard and brittle；but，when cooled ra－ pidly，soft and malleable．In a yet more re－ markable degree is this anamalous property possessed by an alloy，composed of four parts of copper and one of ti，called tam－tam，used in the construction of gongs and other musical in the constru
instruments．

## LITERARY NOTICES．

We have received from V．B．Palmer，Esq．，a copy of his Business Men＇s Almanac for 1850．It conntains
many excellent articles upon all the most important branchesof trade，which，together with its astronomi－ cal calculations，forms a very useful compilation not only for the counting－room，but for general use．Sin－ gle copies $121-2$ cents．Address V．B．Palmer，New York．
Sartain＇s Union Magazine，for November，has been sent us by Messrs．Dewitt \＆Davenport，Tri－ bune Buildings．The contents both in quality and uantity cannot be surpassed by any other periodical flect credit upon the artists．The contributions are froct credit upon the artists．The contributions are we notice＂Leaves from the bank of the Rhine，＂by Fredrika Bremer，whose arrivalin this country has just been announced．
Holden＇s Dollar Magazine，under the manage－ ment of Mr．W．H．Deitz，loses none of that attrac－ tiveness which has characterized it while controlled by its former proprietor．The number before us for November contains many excelilent articles，besides a biography and likeness of the gallant Hungarian Ge－ neral，Arthur Gorgey．A new Volume will be com－ menced the 1st of Janary，with many important im－ provements．

## another column Grahan＇s $M$

us by W．H．Graine，for November，has been sent city．The embellishm，Brick Church building，this ＂Happy as a King，＂＂Head Quarters of Gen．Knox，＂ －a very splendid engraving ；＂Paris Fashions，＂and ＂The Balize．＂This number is excellent throughout We notice that a new Volume commences January 1st．
Ranlert＇s Archirect．－No．9，Vol．2，of this su－ perb monthly periodical，contains plates of three de－
igns，with perspective and sectional views，and full signs，with perspective and sectional views，and full
specifications．Every stickr，stone，stair，and part of the building，is specified，and the average price laid down，and the whole footed up．No person who is in－ terested in architecture，in any manner，can well be without this excellent publication．


SCIENTIFIC AMERICAN is commenced about the 20th of Sept．each year，and is
the best paper for Mechanics and inventors published in the world．

 Art，Science and Mechanics，having for its objoct the
advancement of the INTERRESS OF MECHANICS，
MANUFACTURERS nd INVENTORS．Each num－
ber is illustruted with from five to TEN original EN． MANUFACTURERS and INVENTORS．Each num－
ber isillustrated with from five to TEN original EN－
GRANINGS OF NEW MECHANICAL INVEN－
TIONS，nearly all of the best inventions Which are
patented at Washington being illustrated in the Sci－

 rections on the construction management and use of
all kinds of MACHINERY，TOOLS，to．\＆o．
 being adapted to binding，the subscriber is possessed，
at the endof the year，of a large volume of 416 pages，
illustrated with upwards of 500 mechanical engravings．
 1 for six months．Those tho wish to subscribe hat
nly to enclose the amount in a letter，idirected to
MUNN \＆CO．， Publishers of the Scientific American
123 Fulton street，New York． All Letters must be Post Paid．


