

Dyeing Blue．－Dissolve one part of indigo in four parts of concentrated muriatic acid ；to the solution add one part of dry carbonate of potash，and then dilute it with eight times its weight of water．The cloth or yarn must be boiled for an hour in a solution containing five parts of alum and three of tartar for every thirty－ two parts of cloth or yarn．It is then to be thrown into a water bath previously prepared， containing a greater or smaller proportion of diluted sulphate of indigo，according to the shade which the material is intended to receive In this bath it must be boiled till it has acquir ed the wished for color．
To Dye Yellow．－Wool may be dyed yel low by the following process：let it be boiled for an hour with one－sixth of its weight of alum dissolved in water as a mordant．It is thento be plunged，without being rinsed，in a bath of warm water，containing as much quercitron bark as equals the weight of the alum employ－ ed as a mordant．Turn the cloth through the boilingliquid till it has acquired the intended color．Then stir in one－hundreth part of the weight of cloth of powdered chalk，and con－ tinue the boiling eight or ten minutes longer For a Bright Orange or Yellow Color，the oxide of tin must be used as the mordant．To make it a bright yellow，a little alum must be used with the tin．If a little be added，it will give the yellow a delicate shade．
To Dye Black．－Boil the wool，cloth，or yam two hours in a decotion of nut－galls ；af－ terwards keep it two hours more in a bath， composed of logwood and sulphate of iron kept at 2 scalding not boiling heat．During the operation the material must be frequently taken out and exposed to the air．The pro－ portions are five parts sulphate of iron，thirty parts logwood for every one－hundred parts of cloth，yarn，or wool．A little acetate of copper added to the sulphate of iron improves the co－
［We select the above receipts from the Lou－ isville Journal，which copies them from the North American Farmer．As they will no doubt have a wide circulation，we would like to correct the errors in them，as they may lead
to expense，waste and immediate injury，both to stuffs and cloṭh．1st－To dye blue，never use muriatic acid，it will destroy the coloring qualities of the indigo，and make a dirty green－ ish black liquor．The proper acid is good sul－ phuric－and don＇t use any potash，and the blue can be dyed without the tartar or alum． It is at best a fugitive color．For farmers the old fashioned way for wool is the best．The above will not dye cotton，but the sulphate of indigo dyes silk，and does well to renovate rib－ bons，\＆c．
2nd－By scalding with boiling water，some quercitron bark，and then using the clear，boil－ ing it with some of the muriate of tin in a clean tin or copper kettle，a beautiful yellow will be dyed on flannel or cotton，and by add－ ing a little tartar and ground cochineal，a beautiful salmon color，or an orange color，will be produced．
3rd－If persons want to spoil their cloth， they will dye it black，as above directed．In dyeing black first boil the woollen cloth in two ounces of copperas to the pound of wool，along with a very minute quantity of sumach．This is done for an hour，when the cloth is taken out，dried and then boiled in a solution of log－ wood，at the rate of four or five ounces to the pound．This is boiled for one hour，and a good black is produced．If the color is grey， it wants more logwood－for some is very bad； if too brown，it has too much logwood in it， and it has to be removed by washing the cloth well first，and then running them through a weak acidulous liquor，such as a little sulphu－ ric acid in water．They must be well washed after this．
Of the many receipts published for the bene－ fit of our farmers，we are sorry to say，that we can now and then only find a correct one．

Liquid Hydrogen Gas．

Mr．E．Brown，of Preston，Eng．，has dis－ \square liquid．This discovery may be of great im－
portance to erial navigators．A paper on the subject is soon to be presented to the Royal Society．

Hollow Iron Moulding． ［Continued from page 40．］

［Continued from page 40．］
core－bar for a pipe of any given inside di－ ameter is selected two or three inches less in diameter，with the view of providing for hay－ rope and loam，by which the core is made up to the necessary thickness．The loam，which forms the external coat of the core，is made as open as practicable by augmenting the usual proportion of sharp sand in its composition． The hay，also，which is simply twisted into ropes to facilitate its application to the core， fulfils the important office of a conducting me－ dium for the air forced through the loam，lead－ ing it from all parts of the surface to the ven Fig． 8.
holes in the core－bar．The method of apply ing the hay and the loam is simple．The core－ bar is rested by its pivots on two iron tresses， the upper edges of which are formed with cor－ responding semi－circular or triangular denta－ tions，to receive the pivots．Thus placed，the core－bar is caused to revolve by a crank－han dle applied at one extremity，during which operation the rope is led on regularly along the barfrom end to end，and fastened there： It must be tightly done，as any slackness in the rope will permit it to yield when subjected to the pressure of the iron，which has the ef fect at least of altering the form of the pipe， if，as in some cases，it does not break up the core and spoil the casting．Before finishing the core with loam，the hay receives a slight coating of it all over，as a cement to smooth down the surface．This being dried，for the succeeding application of the loam，a loam board is necessary．This is a board of suffi－ cient length to rest upon the tresses which support the core．Along this board is laid the loam intended to form the core．The edge of the board is cut exactly to the form of the Fig． 9.

core，being，indeed，a half－skeleton reversed This board being then set along－side the bar and weighted down at the extremities，at distance of the half diameter of the pipe from the centre，it is evident that，as the core－ba revolves，and the loam is pushed over upon it， there will ultimately be formed a coating of loam completely enveloping the coat of hay， which shall also possess the figure of the core． Fig． 8 shows the loam board employed in onstructing the core of the pipe，（fig．6－see ast number．）It will be observed to follow the outline of the core．Fig．9，in like manner， epresents the loam－board that would be re－ quired to form the pipe itself，（fig．5，）were there no wood pattern of it．In such a case an additional coat of loam is run by means of it upon the core．（fig．6．）In this way，it is evident，a loam pattern is at once formed．In setting the board，the parts A A，fig．9，will apply to the same parts，（A A，fig．6），which， in so far，serve for a guage．The misplacing of them exactly opposite each other is to be guard－ ed against，as there is not the same security

Fig． 10.
Fig． 11.

or their being correctlyplaced．Before recei ing，however，the addditional thickness，the core must be washed over the surface with charcoal and water，that the thickness may be easily separable afterwards，and also tho－ roughly dried in the stove．In the meantime， having finished and dried the ${ }^{4}$ loam pattern，it receives in like manner a wash with charcoal water，and is ready to be moulded．This be ing done in the usual manner，the thickness is peeled off，and the naked core replaced in the mould．To aid the stiffness of the core， steeples are planted here and there over the urface of the mould．Fir 10 is over the
tion of the hody of the core．There are three concentric piles－the inmost，which is the core－ bar，with several vent－holes in section，and the cross－knee at the end ；the next is the hay， and the external coat is the loam．Fig． 11 is sketch of one of the iron tresses used in th work．
All wood patterns of pipes are constructed in two halves，which have two or more pins in the one entering corresponding recesses in the ther，to prevent their shifting when put toge ther and moulded．In proceeding to mould pipe，a laying－down board is usually employed， which is simply a straight piece of wood a ong and as wide as the moulding－box．Upon this board one half of the pipe is laid with the flat side down，the box is placed over it and rammed；the whole is inverted，and the board lifted off．The remaining half of the pipe is set upon the imbedded half，and the upper box over it，and linked to the under one；the upper box being rammed，the patterns are loosened，as we have in other parts described， and longitudinally also by blows upon the ends．The boxes being parted，the patterns removed，and the moulding blackwashed with blackening，the core is set in，and the box clo ed．Small pipes，when there are several to be cast，are usually moulded in pairs in one box when green sand is employed as a moulding naterial．The metal is poured in at one en－ trance，which branches to each moulding shortly after which streams of aqueous vapo mixed with hydrogen and other gases，arising rom the imperfect combustion of the charcoa and hay，are expelled from the extremities of the core－bars，sometimes resolving themselve into luminous jets．Soon after the metal is poured，the castings are turned out to cool after which the core－bars are drawn from them which is a comparatively easy task，as the ha has been for the most part consumed，and of course occupies less bulk．Long small rods of iron are next introduced，with scrapers formed on the ends of them，and are drawn from end to end，to clear the interior of the pipe of the remains of the core．

Choloretic Discovery．

Th London Medical Gazette states that a most important discovery has just been made known by certain Doctors Snow，Budd and Brittan，and other celebrated physicians，res pecting the cholera．They have prepared a very long report，which will soon be published， in which they show that the cause of malig－ nant cholera is＂a living organism of distinct species．＂Dr．Budd procured water from dif－ ferent parts of London，and detected organism in great numbers in every specimen of drinking water．He states，in a long letter to the Lon don Times，that this organism is of the fungus tribe，and is taken，by the act of swallowing， into the intestinal canal，and there becomes ＂infinitely multiplied by the self－propagation which is characteristic of living beings．＂The pressure and propagation of these organisms， and the action they exert，are the cause of the peculiar flux which is characteristic of malig－ nant cholera．These organisms are dissemi－ nated in the air，in the shape of impalpable particles，in contact with articles of food，and principally in the drinking water of infected places．The evidence on which these conclu－ sions are founded，has been placed in the hands of the President of the College of Physicians， and will shortly be made known to the world for the benefit of mankind．
There have been so much said about this and that discovery，relative to the cause of cholera，that we have become quite skeptical about reported new discoveries．

Linseed Oll．

This oil is obtained in its greatest purity by cold pressure，but by a steam heat of about 200° Fahr．，a very good oil may be extracted． The usual method is to torrefy the seeds in or－ der to destroy the mucilage，to bruise，and then submit them to pressure．The oil is of a green－ ish yellow color，and has an odor peculiar to itself．It is siccative especially when boiled with litharge，becoming then reddish and clear after repose．It dissolves in five parts of boil－ ing and forty of cold alcohol，and in 1.6 parts of ether．When kept for some time in a par－ tially open cask，and in a cool place，it depo－
sits a portion of its cold constituent along with a brown powder．

Tam－Tam．
It is remarkable that copper possesses pro－ perties，in respect to its hardening and tem－ pering，which are the opposite of those of cast ron and steel ：when cooled slowly，it be－ comes hard and brittle；but，when cooled ra－ pidly，soft and malleable．In a yet more re－ markable degree is this anamalous property possessed by an alloy，composed of four parts of copper and one of tin，called tam－tam，used in the construction of gongs and other musical instruments．

ITEERARY NOTICES．

We have received from V．B．Palmer，Esq．，a copy of his Business Men＇s Almanac for 1850 ．It conntains
many excellent articles upon all the most important branches of trade，which，together with its astronomi－ cal calculations，forms a very useful compilation not only for the counting－room，but for general use．Sin－ gle copies 12 1－2 cents．Address V．B．Palmer，New York．
Sartain＇s Union Magazine，for November，has been sent us by Messrs．Dewitt \＆Davenport，Tri－ bune Buildings．The contents both in quality and uantity cannot be surpassed by any other periodica lect credit upon the artists．The contributions are rom the pen of the very best authors：－ we notice＂Leaves from the bank of the Rhine，＂by Fredrika Bremer，whose arrival in this country has just been announced．
Holden＇s Dollar Magazine，under the manage－
ment of Mr．W．H．Deitz，loses none of that attrac－ tiveness which has characterized it while controlled by its former proprietor．The number before us for November contains many excellent articles，besides a biography and likeness of the gallant Hungarian Ge－ neral，Arthur Gorgey．A new Volume will be com－ menced the 1 st of January，with many important im－ provements．Fo

nother colum

us by W．H．Graha，for November，has been sent city．The embellishments are beautiful，consisting of
cithe ＂Happy as a King，＂＂Head Quarters of Gen．Knox，＂ －a very splendid engraving ；＂Paris Fashions，＂and ＂The Balize．＂This number is excellent throughout We notice that a new Volume commences January 1st．
Ranlett＇s Architect－－No．9，Vol．2，of this su－ perb monthly periodical，contains plates of three de－ signs，with perspective and sectional views，and full
specifications．Every stick，stone，stair，and part of the building，is specified，and the average price laid down，and the whole footed up．No person who is in－ terested in architecture，in any manner，can well be without this excellent publication．

INVENTORS AND ME．
CHANICS． FIFTH YEAR OF The Best Mechanical Paper IN THE WORLD
A New Volume of the
SCIENTIFIC AMERICAN is commenced about the 20th of Sept．each year，and is
the best paper for Mechanics and inventors published
in the world in the world．
 of NEW INVENTIONS． Art，Science and Mechanics，having for its object the
advancement of the INTERESTS OF MECHANICS，
MANUFACTURERS and INVENTORS MANUFACTURERS and INVENTORS．EAANICS，
ber is isilustrated with from five to TEN Original EN－
GRAVINGS OF NEW MECHANICAL TIONS，nearly all NEW the best inventions which are
patented at Washington being illustrated in the Sci－
entific American．It also contains
 rections on the construction，management ant and use of
all kind of MACHINERY，TOOLS，\＆e．\＆e．
It is printed with new type on beautiful paper，and It is printed with new type on beautiful paper，and
being adapted to binding，the subscriber is possessed，
at the end of the yor
 $\$ 1$ for six months．Those who wish to subscribe ha
only to enclose the amount in a letter，direeted to Publishers of the Scientific American，
1288 Fulton street，New York． All Letters mu

To any person who wRESENT！
To any person who will send us Three Subscribers，
We will present a copy of the PATENT LAWB or THE
UNITED STATES，together with hllh int UNITRD STATES，together with all the information rela－
tive to PATENT OFITCE BTSINEs，
tioncluding full direc－ tive to pATENT OFFICE BUSINESS，including full ireo－
tions for taking out Patents，method of making the
Specifications，Claims，Drawing，Models，buying，

