For the Scientific American． Design in the Natural World． In the lower animals，who want both the accessory means of cleaning the eye and the ingenuity to accomplish it by ofher modes than the eyelids，an additional eyelid，a new apparatus is provided for this purpose．In fishes，whose eye is washed by their element all the exterior apparatus is unnecessary，and is dismissed；but in the crab，the very pecu liar and horny prominent eye would be quite obscured were it not for a particular provision There is a little brush of hair above the eye against which it is occasionally raised to wip off what may adhere to it．
The forms of the bones and joints，and the tendons which play over them，afford a varie－ ty of instances of the most perfect mechanical adjustment．Sometimes the power is sacri ficed for rapidity of motion，and rapidity for power．Our patella throws off the tendon，at－ tached to it from the centre of motion，and hence adds to the power of the muscles of the thigh，which enables us to rise or leap．In the toes of the ostrich the material is different，bu the mechanism the same．An elastic cushion is placed between the tendon and joint，which whilst it throws off the tendon from the cen－ tre of motion，and therefore adds to the power of the flexor muscle，gives elasticity to the bot－ tom of the foot．These cushions serve，in some degree，the same office as the elastic frog of the horse＇s hoof，or the cushion in the bot toin of the camel＇s foot．
The web－foot of the water－fowl is an inimit able paddle；and all the ingenuity of the pre sent day exerted to improve our steamboat makes nothing to approach it．The flexor tendon of the toes of the duck is so directed over the heads of the bones of the thigh and leg，that it is made tight when the creature bends its leg，and is relaxed when the leg is stretched out．In another class of birds，the same mechanism enables the animal to grasp the branch on which it roosts without any ef fort on its part．
A bird＇s egg consists of three parts：the chick，the yelk in which the chick is placed and the white in which the yelk swims．The yelk is attached to the white at two points joined by a plane below the centre of gravity of the yelk．The chick，therefore，is always uppermost，roll the egg how you will；conse－ quently it is always kept nearest to the breast of the mother while she is sitting．
－The hexagonal form of the cells of honey－ comb is proved to be that which the most re－ fined analysis has enabled mathematicians to discover as of all qthers the best adapted fo the purpose of saving room，work，and mate－ rials．And this form is the same in ever country－the proportions accurately alike－the size the very same to the fraction of a line， the wide world over．The discovery was made about a century ago；and the instrument（the fluxional calculus，）that enabled us to find it out，was unknown half a century before that application of its powers．Yet the bee had been，for thousands of years，in all countries unerringly working according to this fixed rule， choosing the same exact angle of 120 degrees for the inclination of the sides of its little room， which every one had for ages known to be the best possible angle，and also chose the same exact angles of 110 and 70 degrees for the pa－ rallelograms of the roof，which no one had ever disoovered till the 18th century，when Mac－ Laurin solved that most curious problem of maxima and minima，the means of investiga－ ting which had not existed till the century be－ fore，when Newton invented the calculus．The bottom of each cell on one side abuts against three on the other，and is supported by the di－ visions between them．It is formed of three plates meeting at an angle，and this angle has been ascertained，by a very intricate mathe－ matical calculation，to be precisely that which enables the greatest strength to be attained with the least material．The celebrated ma－ thematician，Maraldi，brought the results of his calculation to agree with the observed an－ gle within two minutes of a degree．This near $\square$ approximation has been generally considered approximation has been generally considered
quite close enough to establish the fact；but
$\mathrm{L}(\mathrm{I} \mid$ Brougham has recently investigated the
subject afresh，and shown that the bees wer perfectly right and the mathematician wrong J．W． 0.
Cingalese Jewellers and their Forges． Albion，Oct．1， 1849.
Messrs．Edrrors：－Noticing in the first number of the Scientific American a portable blast furnace，has induced me to send you the following：the Cingalese work in gold and sil－ ver with considerable dexterity and taste； and，with means that appear very inadequate execute articles of jewelry－articles that would certainly be admired in this country，and not very easily imitated．The best jeweller re quires only the following apparatus and tools -2 low earthen pot full of chaff or saw dust， on which he makes a little charcoal fire；a mall bambo blow－pipe，about six inches long with which he excites the fire，and through which the artist directs the blast of the blow－ pipe；two or three small crucibles made of th fine clay of ant－hills；a pair of tongs，an an vil，two or three small hammers，a file，and，to conclude the list，a few small bars of iron and brass，about two inches long，differently point－ $d$ for different kinds of work．It is astonish ing what an intense little fire，more than suf－ ficiently strong to melt silver and gold，can be sindled in a few minutes in the way just de－ scribed．Such a simple portable forge de－ serves to be better known；it is perhaps even deserving the attention of the scientific expe－ rimenter，and may be useful to him when he wishes to excite a small fire，larger than can be produced by the common blow－pipe，and he has not a forge at command．The success o the little Cingalese forge depends a good deal on the bed of the fire being composed of a com－ bustible material，and a very bad conductor of heat．The smiths of Ceylon use a composi－ ion as a hone in sharpening knives，and cut－ ting instruments，that is worth noticing．It is made of the capitia resin and corundum The corundum，in a state of impalpable pow－ der，is mixed with the resin，rendered liquid by heat and well incprporated．The mixture is poured into a wooden mould，and its surface levelled and smoothed while it is hot；for when cold it is extremely hard．It is much valued by the natives，and preferred by them to the best of our hones．Respectfully yours，

## L．F．Munger．

Exp
Messrs．Editors：－Having been a sub－ scriber to your paper some time，I have noticed some articles rel to the crank and loss of power by the use of the crank．I do not be－ lieve in any loss of power directly attributable to the crank，but I do believe in a loss of pow－ er which I call incidental to the crank；I find practically a loss，which I say is occasioned by not cutting off the steam soon enough，and exhausting soon enough，in the unexpended momentum of the reciprocating parts，at the end of the stroke，which must be counteracted by an equal amount of steam，making the loss double the amount of such unexpended mo－ mentum．I find by cutting off one quarter of the steam and beginning to exhaust before the piston arrives at the end of the stroke，a saving of fuel is made，amounting in some cases to fifty per cent．，the engines working much smoother，passing the centers much easier， and the wear and tear less．Such amount of saving cannot be attributed to the expansion， as it is greater than any theory of expansion will account for．I wish to call the attention of steam engine builders to the subjec

W．S．H．
The Cotton Experiment in Australla．
A sample of cotton grown in Australia has lately been exhibited in London．It is said to be of very good quality，and superior to the average American cotton imported into Liver－ pool．Two varieties have been raised－one 2 white cotton，the other a light drab or brown cotton．The former is distinguished by a silk－ ness of texture，which is said to be very rarely noticed in American cotton．The question has yet to be solved whether the price which could
be obtained for it in England would be suffi－ cient to pay the expenses of culture and pre， land．

The true oriental shagreen．
The true oriental shagreen is essentially dif－ erent from aill modifications of leather and parchment．It approaches the latter some－ what，indeed，in its nature，since it consists of dried skin，not combined with any tannimg or foreign matter whatever．Its distinguish－ ing characteristic is having the grain or hair side covered өver with small rough round specks granulations．
It is prepared from the skins of horses，wild asses and camels；of strips cut along the chine， from the neck towards the tail，apparently be－ cause this stronger and thicker portion of the skin is best adapted to the operations about to be described．These fillets are to be steeped in water till the epidermis becomes loose，and the hairs easily come away by the roots；af－ ter which they are to be stretched upon a board，and dressed with the currier＇s fleshing knife．They must be kept continually moist， and extended by cords attached to their edges， with the flesh side uppermost upon the board． Each strip now resembles a wet bladder，and is to be stretched in an open square wooden rame by means of strings tied＇to its edges， till it be as smooth and tense as a drum－head． For this purpose it must be moistened and ex－ tended from time to time in the frame．
The grain or hair side of the moist strip of kin must next be sprinkled over with a kind of seeds called Allabuta，which are to be for－ ced into its surface either by tramping with the feet，or with a simple press，a piece of felt or other thick stuff being laid upon the seeds． These seeds are lenticular，hard，of a shining black color，farinaceous within，about the size of poppy seed，and are sometimes used to re－ present the eyes in wax figures．
The skin is exposed to dry in the shade，with the seeds indented into its surface；after which it is freed from them by shaking it，and beat－ ing upon its other side with a stick．The outside will then be thorny，and pitted with small hollows corresponding to the shape and number of the seeds．
When we make impressions in fine－grained dry wood with steel punches or letters of any kind，then plane away the wood till we come to the level of the bottom of these impressions， afterwards steep the wood in water，the con－ densed or punched points will swell above the surface in relief．Snuff－boxes have sometimes been marked with prominent figures in this way．Now shagreen is treated in a similar manner．
The strip of skin is stretched in an inclined plane，with its upper edge attacked to hooks， and its under one loaded with weights，in which position it ís thinned off with a proper semi lunar knife，but not so much as to touch the bottom of the seed－pits or depressions．By maceration in water，the skin is then made to well，and the pits become prominent over the surface which had been shaved．The swelling is completed by steeping the strips in a warm solution of soda，after which they are cleanged by the action of salt brine，and then dyed．
In the East the following processes are pur－ sued．Entirely white shagreen is obtained by imbuing the skin with a solution of alum，cov－ ering it with the dough made with Turkey wheat，and after a time washing this away with a solution of alum．The strips are now rubbed with grease or suet，to diminish their rigidity，then worked carefully in hot water， curried with a blunt knife，and afterwards dried．They are died red with a decoction of cochineal or kermes，and green with fine cop－ per filings and sal ammoniac，the solution of this salt being first applied，than the filingsbe－ ing strewed upon the skin，which must be rolled up and loaded with weights for some time；blue is given with indigo，quick－lime，
soda，and honey；and black with galls and copperas．

Fast Running on the Central Road．
The Central Georgian says ：the Express Train on the Central Road，which left Savan－ nah at eight o＇clock on Saturday night，with the passengers who came out on the Tennes－ see，arrived at Tennille at two $0^{\prime}$ elock，making the distance， 135 miles，in six hours．
［This run was made at night，and it shows that Georgia is not a whit behind any of ou Northern States in railroad speed．

Self－Made American Opticians etts，who are learned without pretence，and who，were they inhabitants of Europe instead of this Commonweath，would long since have been honored with the fostering attentions of philosophersfor their distinguished attainments as Lolland and Fraunhofer were，in the same difficult but exceedingly important department of science，viz．，optics．
One is Alvan Clarke，of Boston，a minature painter who has constructed several telescopes under circumstances very unfavorable indeed partly during those fractions of time when he could not pursue his regular vocation，but chief－ ly late at night．These instruments are scarce－ ly excelled，and not surpassed by those of the most celebrated foreign manufacturers．Mr． Clarke makes every part with his own hands－ grinds and polishes the lenses，and has aston－ ished those who are competent to appreciate the magnitude of his mechanical achievements in the construction of a really splendid refrac tor．This，however is only a small part of the marvel．Mr．Clarke is profoundly familiar with the laws of light，and with his own beau tiful instruments has made himself as fami－ liar with the permanent and the telescopic ob jects of the heavens，as with the canvass on which he daily labors for bread：
The other，equally deserving for his moral qtalities，mechanical ingenuity，and profound knowledge in the same field of science，is J．B Allen，of Springfield，a modest，retiring，de serving individual，who，as in the other case without a patron，without an instructor，and almost without the approving recognition of those who are reputed to be wise above the multitude，has few equals in the domain of optics．He，too，has fabricated excellent re－ flecting telescopes－and it would be an honor to the great town of Springfield to purchase one of them for the use of the public schools，as the period may come when it will be a boast that Mr．Allen resides there．At the late ses－ sion of the American Association for the Ad－ vancement of Sciences，at Cambridge，Mr．A． exhibited a microscope which he had made－ If we not misinformed，he had never seen one himself before．It was admired for its wonderful defining powers，and is enough to give him a permanent reputation．Amo Lawrence，Esq．，of Boston celebrated for his acts of generosity and encouragement，purchas ed it at once，and Mr．Allen was elected a member．
［The above is from the Boston Medical and Surgical Journal．It puts us in mind of Gray＇s incomparable Elegy．

Full many a flower is born to blush unseen
There is a common factory operative in this State，who can make telescopes，and micro－ scopes of a high order，and who has made some first class optical instruments．
There is another who is a good portrait pain－ ter，and has talents of no common order for exe－ cuting artistic works of art．There may be many more such men walking in the humblest ranks of li．e．Their chief wants are friends brass in the face，and brass in the pockets．

Amertcan Indigo．
The Indigo plant in a native of South Car－ olina and it grew spontaneously among its weeds and woods．More than one hundred years age the planters there commenced its cul tivation．In the year 1748 South Carolina exported to Great Britain 200，000 pounds and the Parliament granted a bounty of 12 cents perlb．to induce its greater cultivation．In 1748 when that ordinance was passed，Indigo was ne of the staples of South Carolina，and we believe of Georgia also．Now in 1849 not a single pound of Indigo is raised in South Car－ olina，or as far as we know，in all the South． A plant，which is indigenoys to that region， and which in itsearly cultivation was exceed． ing profitable，has been driven from existence by the cheap labor of India．Great Britain now pays seven million of dollars a year for Indigo raised in India
［The above we derive from an exchange， and we must say thatwe don＇t believe it．A great deal of indigo is raised for domestic dye－ ing in South Carolina，and other of our South－ orn States．

