Sriuntifit Jthtrivtur
Lightning and Lightning Conduct
（Prepared for the Scientific American．） （Prepared for the Scie
No．： 2.
These extracts sufficiently show that Dr． Franklin＂was fully aware of the importance of a system of lightning conductors．A conduct ing rod，whatever the metal may be of which it is made，or the manner in which itmay be applied should be viewed onlyas a connector of the various conducting parts of the entire mass of buildings，ships，\＆c．，to allow of the trans－ mission of discharges of electricity with secu－ rity，which would not pass without inter mediate explosion and consequent damage，for were buildings，\＆c．，composed entirely of me－ tal，there would be no occasion for such an addition，nay the occurence of accident to them would then be unknown．The cathedra at Sienna，in Italy，was fittedwith a conductor consisting of large bars of iron．The popula prejudice of the time caused it to bear tb appellation of the Heretic Rod；a terrific thun－ der－storm however visited theq city，the cathe dral towers seemed doomed to destruction， vivid flash，a hissing noise，and a loud peal took place in almost instantaneous succession the darkness consequent upon the vividness of the flash disappeared and the tower stood，even to its gilded ornament untouched．
The results of experimental enquiry and practical application have shown that con－ ductors should be composed of the best con－ ducting metal，in a commercial point of view．
They should also have the greatest electrical They should also have the greatest electrical capacity－should be always well connected together，and of such a form as to present the greatest amount of surface for a given quality of material．Where these conditions are ful filled their application to buildings require the first consideration－their superior terminals should be securely fixed above the highest im mediately surrounding object，and be contin－ ued in the shortest and most direct line to the earth，being in their course downward fixed closely and securely to the external walls of the building，terminating at their inferior ex－ tramity below the surface of the ground，from the wall dipping downwards．Where practi－ cable they should be continued into some well， drain，or damp place away from the building． Another and important point，about which there has until lately been much cavil，is，that not only should the conductor be fixed close to the wall but be connected also with all the prin－ cipal metallic surfaces in the building．For marine purposes the same conditions equally apply，but the particular method of applica－ tion here required is necessarily different to that in buildings．To fulfill the first condition， copper，as a material for the construction of conductors has been found the best in a com－ mercial point of view；for the 2nd and 3rd conditions，copper－rods，copper－chain，copper tube，flat copper strips，and copper－wire rope， have been severally proposed，recommended applied，and tested．To fulfil the 4th condi tion，copper strips，copper tubes，and copper－ wire ropes have been also proposed and tried． The copper rod for buildings，has been applied according to rules；the mean diameter of those erected being $\frac{1}{2}$ or inch．They have been ap－ plied to churches，towers，monumental pillars， chimney－shafts and high buildings of every kind，with success as regards their efficiency． The objections to this form，since the intro－ duction of others，are，that where applied to high buildings，even plain and straight，such as gable end of houses，chimney－shafts，\＆c．； 1st，the number of joints render the perfect continuity dependant upon the care and skill of the workmen，employed；2nd，the expense of making these joints；3rd，the greater cost
for a given surface，\＆c．For other forms of for a given surface，\＆c．For other forms of
buildings，as spires，towers，\＆c．，where the conductors require to be bent，set，and fitted in various positions，the waste of material in cut－ ting，and the time required in applyiug and connecting the lengths of rod，and the expense attendant thereon，are amongst the principal objections．For marine purposes theyare prac－ tically inapplicable；their form and the ar－ rangement of the masts，\＆c．，preclude their
being fixed thereto；even if they were，they
must of necessity be grooved into the masts which would weaken this important part of the ship，the superior masts having to be rais ed and lowered；the difficulty in effecting a perfect mechanical contact is also great．The termination of this form and the application of conductors is most objectionable；continu－ ing down the mast it must either go through the bottom with the risk of imperfect continu－ ity，and consequent disruptive discharge，or be onducted out of the vessel by branches a right angles，which are，of course，not only exceedingly objectionable in theory，but most dangerous in practice，as also is the introduc－ tion at all of the discharge into the vessel which，if there be another mode，is by all means to be avoided．That this cannot be ap－ plied to the shrouds or rigging of a vessel will eadily be understood．
History of Propellers and St

gation

Continued from page 336］
bicsson propellem．
Fig． 68.

It is a number of years since the screw pro－ peller was introduced into America，and in March 1834，a patent was granted to John B． Emerson for a submerged propeller．The first specification of Emerson was a bungling busi－ ness，and the patent with it was not worth a snuff，as it had not a correct drawing attach－ ed，but a second drawing was filed after the patent was granted，and in a trial for infringe－ ment of his patent against Hogg \＆Delame－ ter，the jury found a verdict for Emerson，and against the propeller known as＂Ericson＇s Propeller，＂which is now presented as applied to the Princeton，an American frigate，which proved to be a very bad vessel in every sense of the word．The Princeton was 164 feet long， with a breadth of bsam of 30 feet；the depth of the hold was 22 feet 6 inches，the draught of water was 17 feet 6 inches，and the burth－ en about 700 tons；the propeller was 14 feet in diameter，with six blades，and made from 32 to 36 revolutions per minute，at which rate the vessel＇s speed was stated to be nearly 14
miles per hour．The engines were about 400 horses hour．The engines were about 400 ions power ；they were of peculiar construc－ containing vibrating pistons or fiaps，with

cranks upon the ends of the suspending pivots both these were coupled by connecting rods to a main crank on the driving shaft，the length of these cranks being so proportioned that their alternate vibrations should give a rotary mo－
tion to the main crank，and thus act directly upon the propeller，without the intervention of bands or gearing．
We have seen many flattering notices of con－ ecting the pistons by direct action with the propeller shaft，and have heard many grave objections to the use of cog gearing in propel－
lers，but the argument seems all to be in favor
of the cog gearing，when the master wheel ha good wooden teeth．The＂City of Glasgow＂ is connected in this way，and if there is one fact stronger than another to give force to her arrangement of gearing，it is her succes
Henley＇s Magneto－Electric Telegraph． A striking experiment has just been made under the direction of the French goverment， to test the efficacy of Mr Henley＇s magno－elec－ tric telegraph，which is worked without bat－ terries of any kind，and at a fraction of the cost of the Voltaic system．The line of rail－ way assumed for the trial was that from Paris to Valenciennes．At the Paris end the direct－ or－in－chief of telegraphs for the French gov－ ernment，M．Foy，superintended；while at Vulenciennes were present the minister of pub－ lic works Count Shekendorff，the Prussian Am－ bassador，M．Mosay，the chief engineer of the Belgian railways，Baron Devaux，M．Quetelet， and M．Cabray，chief engineer of the Belgian government；the three latter being members of a commission appointed by the Belgian gov－ ermment to report on the subject．The distance is 180 miles，being the longest telegraphic line in France．After a most satisfactory series of trals on the single distance，first with one twen－ tieth of power，the wires were connected so as to treble the total length of wire，making 540 miles to and from Paris and back－the mag－ netic message being communicated through the first wire，back by the second，through the third，and back again by the earth．It was not anticipated that the magnet could possibly work through this enormous resistance；but，in fact，it is alleged it is worked as distinctly and rapidly as when only made to traverse the 180）miles with full power．The ordinary tel－ egraph with battery power used by the French government，was then put in requisition；but not the slightest effect was produced．On the singledistance，even a signal was sometimes not obtained for several minutes，owing，it is said，to some fault in the batteries，although the officials were exerting themselves to the utmost．The government officers and others inspected the working operations from 10 to 3 ＇clock，and expressed themselves thoroughly satisfied with the success of the tral．
［The above is from the London News，and it shows how a thing may be described and yet not desicribed．We are told that the above is a magno－eletric telegraph，and yet we are in－ formed that no battery is used．What power on earth is used we are not informed．With－ out a battery of some kind，we venture to say the telegraph cannot be worked，unless by an electric machine，and that would not be a con－ stant power，a thing which is required for
working telegraphs．If，however，this is the ＂magneto telegraph，＂whereby a signalling current is sent along by the magnet，it is true that it will avoid the expense of batteries，but then it is too slow，and will not answer for anything but a railroad telegraph．

Pure Water－－The Cholera．

The Cholera statistics of London for the year 1849，taken from the Registry in the last num－ ber of the Edinburgh Review，make it appear that a plentiful supply of pure and wholesome water is one of the most effective preventive means from the ravages of this terrible conta－ gion．The Review states，and indeed it is well known to inquiring Americans，that London， compared with Philadelphia and New York，is miserably supplied with water．It appears that that portion of the great English metrop－ olis which lies north of the Thames，is better supplied than that which lies south of the riv－ er．The striking fact follows ：－The proportion of deaths from Cholera for the 13 weeks ending September 15 th， 1849 ，to every 10,000 of pop－ ulation，was，north of the Thames，about 30， and south of it，about 159－showing that the mortality was five times greater than where there was a more sufficient and pure supply． These are a verages，but more striking contrasts are exhibited in the details．

Thebacco Planting int New York．

 The Syracuse Star states that Robert Flem－ ing and Peter R．Reed have purchased a fifty cre lot three miles northwest of Syracuse，and ploying twenty men．They have also severalty，from all of which their crops will be hea－ vy．For several years past they have been very successful in growing tobacco at Manlius．
After a drought of five years，the Province of Murcia，in Spain，was visited in the month of May last by copious showers of rain．

LITERARY NOTICES．

The Water Cure Jouknal－Published at $\$ 1$ per annum，by Fowlers \＆Wells，Nos． 129 and 131 Nas－ several illustrationsex hibiting the anatomy andphy－ siology of the human body．The work is fullof inte est and should be introduced into every household ${ }^{\circ}$ This July number commences the volume，and is therefore a favorable time to remit the subscription price．
The History of the Decline and fall of the Roman Empire，by Edward Gibbon，enriched with copious Notes，（which add much to its value，）by H．H．Milman－Is now published complete in six vo－ lumes，of nearly 600 pages each ：price 40 cts ．per vol－ me．This work was completed June $27 \mathrm{hl}, 1787$ ，hav－ years．He has left a rich treasure to the world，and an enduring monument to his fume as a man of pro－ found genius．Each successive era which marked the rise and fall of this mighty empire，are themes upe in which the mind can dwell with infinite plearure and prefit，comprehending as it does one of the most aw－
ful spectacles in the history of the world traced out in each connection by a master hand．To the states－ man this is a work of incalculable worth．It is no less so to every individual whe desire to become con－ versant with the records of the past，and the public
are indebted to the enterprizing publishers，Messrs． Phillips，Sampson \＆Co．，Boston，for an edition，at a cost so trifing，compared with its intrinsic value． We are indebted to John Carruthers，our excellent Savannah Agent，for a copy of his＂Advertiscer，＂and els for the very complimentary notice of the Scien ificAmerican．We have known，for some time，that our iriend kept constantly on hand a general assort－ ment of the most approved＂Guns，Pistols and Hard－ ware，＂but never dreamed ol his entering the edito－ rial arena．Since，however，he does 80 ＂without the ope of fee or reward，＂nothing selfish can be attri－ buted to him for coming out occasionally＂with the
Mammoth Advertiser．He says in his prospectus that if he cannot give satisfaction in the editorial ca－ pacity，he feels sure of pleasing＂all reasonable men with a first rate double barrel gun．＂
Marine axd Naval Architecture．－Number 7 of this excellent and beautiful work，by John W． Grifiths，Marine and NavalArchitect，is just publish－ ed．It contains full descriptions for reducing from modes，and enlarging from them．This work，we
are happy to know，is highly prized by all those who e capable of judging of its merits．
Dictionary of Mechanics and Engine Work－ Number 13 of this work，published by D．Appleton \＆ C－．，Edited by Oliver Byrne，contains varietics \bullet f Steam Engines，Engraving on Wood，Envelope MIa－ be Fulling），and a Felloe Machine．

Wach minemis AND mechanics．

fifth $\overline{\text { YEAR OF }}$
The Best Mrechanical Paper

SCIENTIFIC AMERICAN

 Art，Science and Mechanics，having for its obernat the
advancement advancement of the INTERESTS OF MECHANICS，
MANUFACUURERS and INVENTORS．Eachnum－
ber is illustrated with from five to TEN original EN－ ber is illustrated with from five to TEN original EN－
GRAVINGS OF NEW MECHANICAL INVEN－
TIONS，nearlyall of the best inventions which ars TIONS，nearly all of the best inventions which ar－
patented at Washington being illustratedin the Sci－
entificAmerican．It also contains a Week entifieAmerican．It also oontains a Weekly List of
Patent Claims；notices of the progress of all Me－
chanical and Scientifc Improvements；practical di－
rections

 lustrated with upwardsofs500 mecha，nicalengravings．
TERMS：Single subscription，\＄2 a year inadvance；
$\$ 1$ for six months．Those who wish to subscribe have \＄1 for six months．Those who wish to
only to enclose the amcunt in a letter．
To any person who will send us Three Subscribers， We will present a copp of the PATRNT LAWs OF THE UNITED STATES，together withall the information rela－
tive to PATENT OFFICE BUSINEBS，including full direc－ tione to partant office business，including full direc－
tioning out Patents，method of making the
Specifications，Claims ．Prawing Mod Specifications，Claims，Drawings，Models，buying，
selling and ransferring Patent Rights，\＆o．
N．B．－Subscribers will bear in mind that we em． ploy no Agents to travel on our acount．
Mublishers of the Scientific American， Publishers of the Scientific American， 128 Fulton
atreet，New York．All Letters must be Post Paid． Inducements Tor Clubbing．

