Plank Roads．

Their Construction．－In the most gener－ ly approved system，two parallelrows of small sticks or timber（called indifferently sleepers， stringers or sills）are imbeded in theroad， 3 or 4 feet apart．Plank，eight feet long and three inches thick，are laid upon those sticks across them，at right angles to their direction．A side track of earth，to turn out upon，is care－ fully graded．Deep ditches are dug on each side，to ensure perfect drainage；and thus is formed a plank road．
Laying them out．－In laying out a plank road，it is indispensable，in order to secure all ： the benefits which can be derived from it，to avoid or cut down ail steep ascents．

A very short rise of even considerable steep－ ness may，however，be allowed to remain，to save expense；since a horse can，for a short time，put forthextra exertion to overcome such an increased resistance；and the danger of slipping is avoided by descending upon the earthern track．

A double plank track will rarely be necesisa

 ry．No one without experience in the matter can credit the amount of travel which one such track can accommodate．Over a single track near Syracuse， 161,000 teams passed in two years，averaging over 220 teams per day，and during three days 720 passed daily．The earth－ en tur－out track must，however，be kept in good order；and this is easy，if it slope off properly to the ditch，for it is not cut with any continuous lengthwise ruts，but is only passed over by the wheels of the wagons which turn off from the track and return to it．They thus move in curves，which would very rarely ex－ actly hit each other，and this travel，being over the earth，ten
than to disturb it．
Covering．－The planks having been pro－ perly laid，as has been directed，should be cov－ ered oven an inch in thickness with very fine gravel or pebbles，from which all the stones or pebbles are to be raked，so as to leave nothing upon the surface of the road that could be for－ ced into and injure the fibres of the planks．－ The grit of the sand soon penetrates into the grain of the wood and combines with the fibres and the dropping upon the road to form a hard and tough covering like felt，which greatly protects the wood from the wheels and horses＇ shoes．Sawdust and tan－bark have also been used．

The road is now ready for use．
Laying．－The planks should be laid directly across the road，at right angles，or＇square，＇to its line．The ends of the planks are not laid evenly to a line，but project three or four inch－ es on each side alternately，so as to prevent a rut from being formed by the side of the plank track，and make it easier for loaded wagons to geta upon it，as the wheels，instead of scra－ ping along the ends of the planks when coming towards the track obliquely after turning off， will，on coming square against the edge of one of those projecting planks，risedirectly up－ on it．On the Canada roads every three planks project three inches on each side of the road alternately．
Durability．－A plank road may require a renewal，either because it has worn out at top by the travel upon it，or because it has been destroyed at the bottom by rot．But，if the road have travel enough to make it profitable to its builders，it will wear out first，and if it
does，it will have earned abundantly enough does，it will have earned abundantly enough
to replace it twice over，as we shall see pre－ sently．The liability to decay is therefore a se－ condary consideration on roads of importance． Decay．－As to natural decay，no hemlock road has been in use long euough to determine how long the plank can be preserved from rot． Seven years is perhaps a fair average．Differ－ ent species of hemlock vary greatly；and up－ land timber is always more durable than from low and wet localities．The pine roads in Canada generally last about eight years，vary－ ing from seven to twelve．The origisal Toron－ to road was used chiefly by teams hauling steamboat wood，and at the end of not six years began to break through in places，and not being repaired，was principally gone at the end of ten years．Having been poorly built，
upon it，indicates the minimum of durability． Oak plank cross－walks are in Detroit，the plank being laid flat as on those of pine．It is believed that oak plank，well laid，would last at least welve or fifteen years．One set of sleepers will outlast two plankings．Several Canada roads have been relaid upon the old sleepers， thus much lessening the cost of renewal．

Electro Magnetism as a Motive Power． At a recent meeting of the Society of arts in London，Mr．R．Hunt an author of no mean celebrity，read a very interesting paper，on this subject of which the following is an abstract： ＂He called attention，in the first place，to the numerous attempts which have been made
to apply electro－magnetism as a power for mo－ ving machines and particularly described the apparatus employed by Jacebi，Dal Negro， M＇Gauley，Wheatstone，and others，noticing incidentally the machines recently constructed by Mr．Hjorth．Since，notwithstanding the talent which has been devoted to this interest－
ing subject，and the large amount of money which has been spent in the construction of machines，the public are not in possession of any electro－magnetic machine which is capable of exerting power economically；and finding that，notwithstanding the aid given to Jacobi by the Russian Goverment，that able experi－ mentalist has abandoned his experimental tri－ als，－the author has been induced to devote much attention to the examination of the first principles by which the power is regulated， with the hope of being enabled to set the en－ tire question on a satisfactory basis．
The power of electre－magnets the author stated，could be increased without limitation． A voltaic current produced by the chemical dis－ turbance of the elements of any battery，no matter what its form may be，is capable of producing by induction a magnetic force，this magnetic force being always in an exact ratio to the amount of matter（zinc，iron，or other－ wise）consumed in the battery．Several forms of the voltaic battery were explained，particu－ larly those of Daniell，Grove Bunsen，and Reinsch，the latter being constructed without metals，depending entirely on the action be－ tween two dissimilar fluids，slowly combining． He had，however，proved，by an extensive se－ ries of experiments，that the greatest amount of magnetio power is produced when the chemi－ cal action is the most rapid．Hence in all machines，it is more economical to employ a battery of intense action，than one in which the chemical action is slow．It has been pro－ ved by Mr．Joule，and most satisfactorily con－ firmed by the author，that one－horse power is obtainable in an electro－magnetengine，the most favourably constructed to prevent loss of pow－ er ，at the cost of 45 lbs ．of zinc，in a Grove＇s battery，in 24 hours，while 75 lbs ．are consumed in the same time to produce the same power in a battery of Daniell＇s construction．The cause of this was referred to the necessity of produ－ cing a high degree of excitement，to overcome the resistance which the molecular forces offer to the electrical perturbations，on which the magnetic force depends．It was contended，
that although we have not perhaps arrived at the best form of voltaic battery，yet that we had learnt sufficient of the law of electro－mag． netic forces to declare that，under any condi－ tions，th．amount of magnetic power would tions，the amount of magnetic power would
depend on the change of state－consumption of an element－in the baterry，and that the question resolved itself into this：－
What amount of magnetic power can be ob－ tained from an equivalent of any material con－ sumed？The following were regarded as the most satisfactory results yet obtained ：-1 ． The force of voltaic current being equal to 678 ， the number of grains of zinc destroyed per hour was 151 ，which raised 9000 lbs ．one foot high in that time．2．The force of current be－ ing，relatively， 1300 ，the zinc destroyed in an hour was 291 grains，which raised $10,030 \mathrm{lbs}$ through the space of one foot．3．The force being 1000，the zinc consumed was 223 grains； the weight lifting one foot $12,672 \mathrm{lbs}$ ．The es． timations made by Messrs．Scoresby and Joule， and the results obtained by Gersted，and more ecently by Mr．Hunt，very nearly agree；and it was stated that one grain of coal consumed in the furnace of a Cornish engine lifted I43
lbs．one foot high，whereas one grain of zinc consumed in the battery lifted only 80 lbs ． The cost of 100 cwt ．of coal is under 9d；the cost of 1 cwt ．of zinc is above 216 d There－ fore，under the most perfect conditions，mag－ netic power must be nearly 25 times more ex－ pensive than steam power．But the author proceeded to show that it was almost proved to be an impossibility ever to reach even this， owing，in the first place，to the rate with which the force diminishes through space．As the mean of a great many experiments on a large variety of magnets，of diffarent forms and modes of construction，the following results was given
Magnet and armature in contact，lift－
ing force
220 lbs

distant	$1-250$	of an inch 906
＂	$1-125$	＂
	$1-63$	7

$1-63$	＂	501
$1-50$	$"$	405

Thus at one fiftieth of an inch distance four－ fifths of the power is lost．This greatreduc－ tion of power takes place when the magnets are stationary．The author then proceeded to show that the moment they were setin mo－ tion a great reduction of the original power immediately took place；that，indeed，any dis－ turbance produced near the poles of a magnet diminished，during the continuance of the mo－ tion，its attractive force．The attractive force of a magnet being 150 lbs ．when free of dis－ turbance，fell to one half，by occasioning an armature to revolve near its poles．Therefore， when a system of magnets which had been constructed to produce a given power is set in revolution，every magnet at once suffers an immense lose of power，and consequently their combined action falls in practice very far short of their estimated power．This fact has not been before distinctly stated，although the au－ thor is informed that Jacobi observed it．And not merely does each magnet thus sustain an actual loss of power，but the power thus lost is converted into a new form of force，or rath－ er becomes a current of electricity，acting in opposition to the primary current by which the magnetism is induced．From an examina－ tion of all these results，Mr．Hunt is disposed to regard electro－magnetic power as impracti－ ble，on account of its cost，which must neces． sarily be，he conceives，under the best condi－ tions，fifty times more expensive than steam power，and is at present at least 150 times as expensive．
［We wonder what has become of the Re－ port of a Committee of one，an examiner of the Patent Office，to whom was granted $\$ 30,000$ last year by Congress to make expe－ riments on Electro Magnetism as a motive power．These things are worth looking after； Uncle Sam＇s funds belong in trust to his chil－ dren，and it is right they should know some－ thing about＂how the money goes；＂$\$ 30,000$ is a sum not to be sneezed at．We hope a full report on the subject will issue from this laby－ rinth of all things curious－men and things－ the Patent Office．
Wonderful Case of Injury to the Brain and Health Restored．
The American Journal of Medical Science， for this month，contains an account of one of the most remarkable cases that ever we have read，by Prof．Bigelow，of Harvard Universi－ ty．It relates to a young man named Phineas P．Gage，who had a huge iron shot through his brain，and strange to say he is now living and in general health．
On the 13th Sept．，1848，Phineas P．Gage， young man of twenty five，＂shrewd and in－ telligent，＂a contractor or head workman on the Rutland and Burlington Railroad，had charged with gunpowder a hole drilled in the rock，and directed his assistant to fill in the sand；supposing whish done，he dropped his tampingiron into the hole to drive the sand home．It happened，however，through some inadvertence，that the sand had not been pour－ ed in；and the iron striking fire upon the rock， the powder was inflamed and the accident pro－ duced by the iron being blown out like a ram－ rod shot from a gun．The tamping iron was a round rod three feet seven inches in length， and an inch and a quarter in diameter，taper－
ing to a point at the top，and weighing thir．
teen and a quarter pounds．The whole of this mmense weight and length－this bar or blud－ geon of iron－was driven through Gage＇s face and brain，as he stooped over the hole，in the act of tamping the sand．Itstruck him on the left chesk just behind and below the mouth， ascended into the brain bekind the left eye， passed from the skull，which it shattered and raised up，＂like an inverted funnel，＂for a distance of about two inches in every direction around the wound，flew through the air，and was picked up by the workmen，＂covered with blood and brains，＂several rods behind where he stood．Gage，who was also more or less scorched，was prostrated，apparently less by the blow of the iron than the force of the ex－ plosion．He fell on his back，gave a few con－ vulsive twitches of the extremities，but＂spoke in a few minutes．＂His men placed him in an ox cart，in which he rode three uarters of a mile to his lodgings，sitting erect；got out of the cart himself，and with but little assist－ ance；walked to the piazze and afterwards up stairs，talking rationally to the physicians and giving them a clearer account of the accident than his friends could ；occasionally vomiting up blood，the effort of which caused hæmorr－ hage from the wound，with the actual loss of a considerable portion of the substance of the brain．The left eye was dull and glassy，but was sensible to the impression of light．Gage bore his sufferings with heroic fortitude，tel－ ling Br．Williams，＂here is business for you，＂ and expressing to Dr．Harlow the hope that ＂he was notmuch hurt．＂
For the first ten days everything went on well， Gage being，with some intervals of natura delirium from fever，pretty rational and hope－ ful；that，at the close of this period，he lost the sight of the left eye，and lay for nearly a fortnight in a semi－comatose state or partial stupor；that he then began to improve in body and mind；was，within two months，walking about in the street，in defiance of instructions； suffered a relapse in consequence；and，final－ ly，being recovered from this，was，in the tenth week，free from pain and rapidly convalescing． ＂The leading feature of this case，＂says Prof．Bigelow，＂is its improbability．A phy－ sician who holds in his hands a crowbar，three feet and a half long，and more than thirteen pounds in weight，will not readily believe that it has been driven with a crash through the brain of a man who is still able to walk off， talking with composure and equanimity of the hole in his head．＂Prof．B．，who justly de－ scribes the case as one＂perhaps unparalleled in the annals of surgery，＂says that he was ＂at first wholly sceptical，＂but that he was personally convinced．Mr．Gage，am we said， visited Boston in January，and was for some time under the Professor＇s observation，who had his head shaved and a cast taken；which， with the tamping iron，is now depsited in the Museum College．At that time，the wounds were perfectly healed，the only vestiges of the accident being blindness and an unnatural prominence of the left eye，with paralysis of the lids，－a scar on the cheek，and anothe on the skull showing the irregular elevation of a piece of＂about the size of the palm of the hand，＂－and，behind it，an irregular and deep hollow several inches in length，beneath which the pulsations of the brain were perceptible．－ Tabing all the circumstances into consider ation，＂says Prof．Bigelow，＂it may be doubt ed whether the present is not the most remark able history of injury to the brain，which has aver been recorded．＂

Pictish Castles．

A writer in the＂John o＇Groat Journal，＂ says they have been pulling down the Pictish Castles on the little island on the fresh water loch called Cleikimin，near Lerwick（Zetland，） escribed with such minuteness by Scott in his journal，till very few traces of its original con struction are left．If the enclosing of lands proceed as it has begun，these curious monu－ ments of a race which has long since perished， will disappear．

These castles have small rooms for a strange departed race of men about four feet high．
［Those who do not know what the Pictish Scott．mean，should read Lockhart＇s Life of Scott．

