32

Grientifit Ameriram．

More about Cochineal to Dye Silk． scarlet and crimson．
 All silk which has its natural gum in it

 must be boiled in strong soap to take away its gum，which．it will do，showing that more substances than either turpentine or alcohol can dissolve it．Spun silk for dyeing has only to be well wet out in very hot water，it is then wrung up and scutched well out．For scarlet it is bottomed with a good full annato yellow， washed out of it，and wrung up for the spirits． The spirits or mordaunt for silk to be dyed red is the nitro－muriate of tin，yet for a sure and excellent spirits，the simple muriate of tin can answer every purpose．Kurst，the German，who first brought the secret of using the nitro muriate of tin in dye－ ing with cochineal，to London，established，or laid the foundation in that city for making the best cochineal colors，at least on silk，in the world，a pre－eminence which she enjoys in some respects even at the present day．
The mordaunt is made up in a tub，a little warm，with about three oz．of white tartar to the pound，and spirits made up in the tub to stand two in the No． 1 hydrometar．The silk is agitated or well handled in this liquor，for about four hours，after which it is taken out and wrung or squeezed，to be entered in the and wrung or squeezed，to be entered in the
cochineal．But previous to this，（getting the mordaunt，）the silk should have been dyed for scarlet a bright yellow with annato．
The tubs for dyeing silk in，are wide at the mouth and narrow at the bottom，being deep enough to work at without stooping．The best way to prepare the cochineal for dyeing silk，is to boil it for about fifteen minutes in bran wa－ ter，and then put it in your tub which must be made up at a good heat and with soft water Three oz．of cochineal boiled in bran water will make a good color，but four oz．may be used in any place where the dyeing of wool is carried on；for the grounds can be used in dye－ ing scarlet again，and thus no loss will be sus－ tained；but always boil the cochineal，if you have no way to use up the garglings．The silk must be handled very quick in the cochi－ neal at the first，but more slow as your liquor gets cold．It is generally handled about four hours and then let down in the liquor，till next morning，and taken out and then slightly wash ed and dried．This is the way to dye a scar－ let，and you might make it a crimson easily by blueing it down in water which contains the slightest portion of lime．First the silk is made a yellow with annato，then it gets the mordaunt，after which it gets the cochineal． This is the most beautiful red on silk．Any person who would like to dye a piece of scarlet silk for themselves，may do so，by using alum for a mordaunt．A certain Dr．Berkenhout once swindled those wise savans，the Lords of the Treasury，in 1715 ，out of $\$ 25,000$ ，for an alleged discovery of dyeing scarlet on cotton and linen．It was a great humbug．Dr．Ber kenhout＇s receipt was transmitted to the Lon don Dyers＇Co．，by the Lords of the Treasury It has since been published，and it shows how adroitly the Doctor imposed upon those learne rulers．
Before cochineal became to be used，a small insect found in many parts of Europe，called kermes，was very much used with an alum pre－ paration in dyeing red．It is a color nearly as bright and beautiful as that produced by co－ chineal，and far moredurable．All the old ta－ pestry in the churches were dyed with kermes It is now out of use．
On wool salmon colors can be dyed with co chineal and quercitron bark，also oranges，only proportion your stuff to the depth of your co－ lor．Muriate of tin and tartar are put in along with the drugs．
No one can dye to shades，but from long experience．Puce colors and lavenders， also violets may be dyed by a cochineal color first and afterwards bringing them to shade with sulphate of indigo．
Cochineal is a most splendid red paint， much used for showy drapery，but it is not so－ \square much used for shown drapery，The following is
tle superior to the one in the last number of the Scientific American ：－4 oz．fine pulverized cochineal，boil it 15 minutes in pure soft water
in a tin vessel，and add two drachms of crys－ tals of tin and 2 drachms of crystals of tartar and boil five minutes longer；take it off the fire and let it stand till cold，then pour it off into crystal vessels for two days，when a thick sediment will have fallen to the bottom，pour off the clean liquor and let the sediment be dried，and then it is fit for the painter，bu ought to be kept in a tight glass vessel．

Hollow Iron Moulding
（Concluded from page 24．）
Fig． 8.

After the box is removed，the plate and its óverlying core of sand，placed in the recess at the cylinder end of the pattern，are lifted out of their position by arms through the core，and carry with them the pattern of the steam ways． The pattern is not in one piece，the flange is separate，and is lifted off towards the upper side of the core and the remainder of the pat－ tern is drawn out by the under side．The parts of the mould near the pattern core are pierced with small holes by fine wires，render－ ing the moulding more porous，to facilitate the escape of gas and air．The mould is also wa－
tered along the edges．The pattern itself is taken out all at once，by pins secured to it a various places to lift it vertically．This is done by several persons and with great care， lifting the pattern truly and gently with one hand，and striking it gently and constantly with the other．When breaks are made they are repaired with damp sand and the trowel． The moulding is next smoothed on the surface with the trowel and a sprinking of charcoal is
smoothed on it，but for very large castings this smoothed on it，but for very large castings this is omitted，and sometimes finely pulverized sand，in a bag，is dusted over it．The mould－ ing is now ready for the reception of the cores， a very particular operation，both in making and fixing the same．

Fig． 9.

Cores of several forms are necessary for th completion of the moulding．There are，first， the cores for the column sockets，of which there are six ；then the coresfor the intermediate por－ tions of the sole plate，of which also there are six，there being two on each side between the socket cores，and one at each end ；again，two cores for the steam ways，with several other in the cores，for the holding－down－bolt holes for the holes that may be required for the bolt－ ing down of pedestals，\＆c．，to the sole．For these，there are simple prints sprigged upon the pattern at the proper places，the impres sions of which in the sand serve to hold the cores securely．
Cores must be made not only of the exact size and shape of the vacancies in a casting whether partial or thorough，which they are intended to form ；allowance must also b made on them for the core－prints，when thes are necessary．This allowance then is provi－ ded in the cores for the column sockets，for which there are prints on the other side of the pattern，fig．7．These sockets go through the sole，and are square in the body，and round at each end，as may be understood on referring to figs． 5 and 6 ，and to the annexed fig． 8 ．which is a plan of the moulding，showing the cores in pir
Fig． 9 is a longitudinal section of the mould－ ing，taken through the steam ways．F，F，F， is the sand of the floor，in which the moulding is formed， $\mathrm{B} \mathrm{B}, \& \mathrm{c}$ ．，are the cores of the column sockets，seen in the section；C，D，are the cores for the steam ways which，in fig．9．，are seen projecting into the sand，above and below，fil－ ling the recesses made for them by the prints． They are formed．in boxes，which open in two，
for the purpose of extracting them．These
with all the other small cores，are dried upon hot plates，heated by stoves．At A，and E E， \＆c．，the cores are shown，forming the spaces in the moulding intended to be vacant．Near the under side of each，in fig．9．are the plates ndicated by dark lines．which sustain the cores he whole，however，must be sustained by the equired thickness of the casting．This is of－ fected by placing strips of sheet iron of small lengths there，but with double knees．If the depth of these be just the thickness of the me－ tal then by placing several of them along the bed of the moulding，they support the cores placed over them，keeping the space clear for the me－ tal．These strips or steeples are imbedded in the casting，where they remain The double knee cores at both ends of the moulding in fig． 8，are put together，each in three pieces．In con－ structing the cores $\mathrm{E}, \mathrm{E}, \& \mathrm{c}$ ．，plain square bo－ dies of sand of the dimension of the interior of the casting，firstformed in boxes of the same ize including at the same time the iron frames enveloped in the cores．The small cores that are necessary to the oblong openings in the sides of the casting are simply attached in their proper positions to the sides of the main cores E，E，\＆c．They are formed and fixed on by simply applying upon the larger core，an pen box of the form required，into which sand packed，thus causing it to adhere to the main core；when the box is filled，the sand is
squared off by a straight edge．All the other maller cores having been made and set in their places，the moulding is finally closed， the upper box being replaced，as seen in sec－ on I I，fig．9．This requires to be done cau iously and in a truly vertical direction，as it now receives the upper ends of the cores which project above the moulding，and also bears upon the other cores large and small which do not require any additional security．
When convenient，two or more gates are connected to one central reservoir，all built on the surface of the sand．Gates at considerable istances from one another are usually supplied eparately with iron from hand ladels．The ther gates that are connected are supplied from crane ladles，which are conveyed by crane from the cupola to the moulding．The flow gates，while the metal is being formed，are plugged with clay－balls，to＂keep down the air＂in the moulding．These plugs are drawn ut when the moulding is filled，and the iron Hows up．It is thus judged whether the cast ing is complete．The plugs must not be pre maturely drawn，as by the two free egress giv－ en to the air，the bottom of the mould is apt to be disturbed by the air confined in the sand． When the metal is poured，the＂feeders＂ re immediately applied at the flow－gates． These are rods of iron，which are plunged into he liquid iron，and wrought up and down in t．By this agitative process，the liquidity of the iron about the gates is longer than other－ wise maintained．It is therefore enabled to supply itself with additional iron from the fow－gates，for it must be understood that in the cooling down of large bodies of metal，the urface sets，while the interior is liquid；and herefore when the interior farther contracts， draws in the surface metal toward the centre and if notfed as above described，the casting it considerably．

To Dye Madder on Wool．

Madder is another stuff used for dyeing red n woollen，silk and cotton．On wool it is yed by having your goods exceedingly clean and preparing them in alum，in the boiler，for about thrèe－quarters of an hour，at the rate of 4 oz ．alum to the pound of wool；the goods are then taken out and well washed．The madder（fine crop）ought to be raised at the rate of one half pound to the pound，and it ought to be steeped in bran the night before using，as a slight fermentation is excited with the bran and madder which extracts all the fine color out of the madder，and being put into the boiler cold and brought up gradually to the spring of the boil，the goods working at the same time，a fine rich color goes on gradually， which is not so readily to be the case in any the spring of the boil，or a madder above
color will also come out of it，and dull your red．Madder is used most extensively in cot－ ton dyeing，but not much on wool，although it is the most permanent of all reds．
The National Intelligencer states that on Saturday in the Washington Centre Market， Mr．Howlett．of that city，gardener and florist， exhibited a number of pineapples of his own raising，from the crowns of the foreign fruit which were thrown into the street and picked up there about a year ago．

Crossing the alps in a Balloon．

M．Arban，a French balloonist，has recently made an ærial voyage from Marseilles，in France，across the Alps to Italy．In eight hours he was carried 420 miles．

LITERARY NOTICES．

The Banker＇s Magazine and Statistical Re－ ISTER，for October，contains a valuable collection of The Law，interesting to all classes．Among these ernment，Finances，Treasury Notes，Revenue and Expenditure of 1846－49，＂＂A Practical Treatise upon nglish Banking，by an able Financier，＂＂The Con－ ition，Past and Present，of the Ohio Banks，＂＂The rail Roads of Great Britain－cost of each，cost per mile，dividends，weekly dividends，＂\＆c．This Maga－ in Baltimore，at $\$ 5$ per a nnum．It hasalready reach d its fourth volume，and is undoubtedly the most comprehensive and able work upon Banking extant Since the commencement of this and during the pub－ ication of the last volume，it presented articles ne－ ver beforepublished by any other magazine；among them we notice the following：＂Chief Justice Taney on Transfers of Stock by Executors；＂＂Baron Hum］ olt＇s Essay on Precious Metals；＂＂Treatise on Prac－ ceal Banking，＂by A．B．Johnson，Esq．，of Utica－a and other emininent English Bankers，upon the Bates mercial Crisis and Bank of England；＂＂Improve－ ments in Bank Note Paper for the Prevention of For－ gery，＂besides many other able articles，which for the want of space we cannot refer to．We can only add that $\$ 5$ could not be more profitably expended than to pay it for a volume of this work．D．Felt \＆Co．，and Hosford， 50 Wall street，N．Y．，are agents．
The October，number of the Phrenological Jour NaL is before us．It presents the mental character of
Dr．Joel Shew，of this Dr．Joel Shew，of this city－the pioneer of the Water
Cure System in this country．It also presents the Cure System in this country．It also presents the ly died in the Alms House at Blackwell＇s Island．The contents of this number are unsually sound and instruc－ tive and is marked with the usual ability which char－ acterises the efforts of Messrs．Fowlers and Wells．

O INVENTORS AND ME CHANICS． FIFTH YEAR OF The Best

 Mechanical Paper IN THE WORLD！A New Volume of the
SCIENTIFIC AMERICAN themmenced about the 20th of Sept．each year，and is ine world．
Each volume contains 416 pages of most valuable
readins ruinter，and is illustrated with over jut MIECHANICAL ENGRAVINGS of NEW INVENTTIONS．
COTH Scientific American is a Weekly Journal o Art，Science and Mechanics，having for its obiect the
adoancement to the INTERESTS OF ME CHANICS，
MANUFACTURERS and INVENTORS．Each num－
 patented at at Washington beint inventions which nre
entifict American．It also ocontains a Wee the Sci－
enty List of American Patents；notices of the progress of all Me－
chanical and Scientific Improvements；practical di－
rections on the construction mana rections on the construction，management and use of
all kinds of MACHINERY，TooLs，\＆c．\＆c．
It is printed with new type on beautiful paper，and
俍 It is printed with new type on beautiful paper，and
being autapted to biniding，the subscriber iop ossessed，
at the end of the year，of a large volume of 416 pages，
 TERMS ：Singlesubscription，\＄2 a a year inadvanee；
$\$ 1$ for six months．Those who wish to subscribe have \＄n for six mont hs．Those who wish to subscribe
only to enclose the amount in a letter，directed to
MUNN \＆CO．， Publishers of the Scientific Amorican
128 Fulton street，New York．
Letters must be Post Paid．

Inducements For Clubbing 5 copies for 6 months，$\$ 4100$ $\$ 800$

Southern and Western money taken at par for sub－
scriptions．Post Office Stamps taken attheir full value． A PRESENT： To any person who will send us Three Subscribers，
 UNITRD STATES，togetier with all the information rela－
tive to PATENT OFFICE BUSINESS，including full direo－
tions for taking out Patents tions for taking out Patents，method of making the
Specifications，Claims，Drawings，Models，buying，
 ploy no Agencts to travel on our account；a list of our
local agents will be fond in another column allo
whom are duly authorized to act as such，and non plocal
local
whom
other

