5

THE ADVOCATE OF INDUSTRY，AND JOURNAL OF SCIENTIFIC，MECHANICAL AND OTHER IMPROVEMENTS．
VOLUME 5．］
NEW YORK JUNE 1， 1850.
［NUMBER 37．

Scientific ${ }^{\text {THI }}$ American， CIRCULATION 14，00． published weerly at 128 Fulton Street，New York，（Sun Building，and 13 Court Street，Boston，Mass． BY MUNN \＆COMPANY． The Principal Office boing at Now York． Hotchkiss \＆Co．，Boston．
Geo．Dexter \＆Bro．，New York City
Stokes \＆Bro，Philadelphia．
R．Morris \＆Co．，Southern
Responsible Agents may also be found in all the
Rincipal cities and town in the principal cities and towns in the United States．

Troy and Boston Rallway．
The Troy papers of Saturday announce the fact that the entire line of this road has been put under contract．The directors，in their circular，state that they have contracted with responsible men to build the road to Pownall， Vermont， $36 \frac{1}{2}$ miles－its entire distance－for $\$ 720,000$ ；which includes every expense con－ nected with building the road，even to iron and land damages；to be padd as follows．cash， $\$ 400,000$ ；stock，$\$ 200,000$ ，bonds $\$ 120,000$ ．－ If this plan is strictly carried out，it will prove， we should judge，a wise and judicious arrange－ ment，as the company know just what their road is going to cost．For farniture of the road，and interests，they estimate $\$ 130,000$ ， making a total of $\$ 850,000$ ；of which $\$ 440$ ，－ 000 is subscribed；$\$ 225,000$ more is taken by contractors－leaving a debt of $\$ 185,000$ ．The contractors are to finjsh the road＂on or be－ fore the 1st of July，1851，＂if they can．

Large Locomotives．

The largest locomotive in the world，says the Madison Courier of the 11th inst．，arrived at the wharf last night，for the Madison and In－ dianapolis Railroad．This locomotive when on the track ready to run，weighs about forty－ three tons－is over 800 horse power．It was built in the shop of the Baldwins，in Philadel－ phia，under the superintendence of Mr．A Cathcart，with five cylinders，and is intended for this end of the road．We are told this en－ gine is called the John Brough，on account of its great weight and for the great amount of business it is capable of doing．

Whom we Trust Our Lives To． The report of the committee of the National Convention，recently in session at Cincinnati， mentions that the medical schools in our coun－ try are too many，the students too numerous， the professors too few and incapable，the quan－ tity of instruction too limited，the quality too superficial，and the preparatory training in－ sufficient．Yet are our lives entrusted to the prsons who are pronouncedcapable after this kind of instruction．

Missouri Pacific Rallway．

James P．Kirkwood，Esq．，late Superinten－ dant of the New York and Erie Railroad，has been appointed Chief Engineer of this Rail－ road．He is a skilful，able and experienced engineer．Chas．Minot，Esq．，formerly super－ intendent of the Boston and Maine Railroad， has been chosen to fill the place of Mr．Kirk－ wood on the N．Y．and Erie R．R．

The Auburn and Rochester Railroad formerly consisting of two corporations but connected together，have consolidated themselves into one corporate body．
The direct railroad communication between New York and Boston，by way of New Haven and＂Springfield，is drawing so largely upon the Stonington route that the managers of that line are to reduce the fare from $\$ 4$ to $\$ 2,50$ ． 4 品

SCHIELE＇S ANTI－FRICTION CURVE．

On our list of Patents this week there is one from which place his papers were sent here， granted to Mr．Christian Schiele of Frankfort， Germany，（a free city，）for the very important discovery of the true form of rubbing surfaces for regulating equal abrasion．This curve is applicable to all bearings of machinery，such as valves，jeurnals，Rec．The practical defect in rotating valves，is，that they gradually wear loose，owing to their working action and great friction，produced by forcible tightening up． This is the reason why so many rotary engines have worked well for some time，and then fail－ ed beyond a remedy．Irregular frictien，with all its injurious effects，is well exemplified in the conical plugged stop－cock，for the amount of wear of the larger end differs from that at the smaller end，because every point of the for－ mer has a larger frictional traverse than any point in the latter．To lessen this evil，the plug is made nearly cylindrical，but the evil attending this form is that a little pressure

Fig． 3.

binds the plug in its socket，and very little wear causes the plug to sink considerably hence the plugs and shells have to be made long and heavy．As the friction of a plug and its socket divides itself in such a manner that the product of the pressure multiplied by the length of way，is the same for any point in the rubbing surfaces，so the length of way being different in different parts，the pressure must differ also－being greatest at the smallest end ；and as the largest end must betight as well as any other part，the wear of the smallest part is obvious．The inventor Mr．Schiele，
who is now residing in Manchester，England，
had his attention drawn to these things some years ago，which resulted in this invention，for which heobtained a patentin England in 1848， and now one for the United States，and to elu－ cidate its principle and its application eight different figures are here introduced．
Figure 1 is the instrument used to describe the curve，and fig． 2 is a vertical section of a locomotive engine regulator constructed on the principle of the curve；fig． 3 is the generated curve itself，and fig． 4 is the vertical section of the shell of a stop cock，the plug of which is formed on the ptinciple of the new curve－free from the imperfections of the old and possessing the property of keeping tight as it wears．
In figure 1 A is a small modern slide to which the rod B is adjusted by a pin C．D is a dra wing pen affixed to a slide which can be moved upon the rod B to the proper distance for the curved required，and is kept in that end in a vertical position，by a spring which fits a groove．This direction of the sharp edge of the pen， D ，is in a straight line to the pin， C ． E is a ruler，along the edge of which the slide， A ，is to be drawn．If the slide，A ，and the rod，B，are so placed that the pin，C，shall be Fig． 4.

at F ，the pen at D ，and the point at G ；the centre line of the rod， B ，will then be over the dotted line，G F，at right angles with the dot－ ted lines，L N，（representing the axis of the curve to be drawn，）and if the slide，A ，be then guided along the edge of the ruler， E ，the pin， C will move along the dotted line，N ，drag－ ging，as it were，the pen，D ，after it，which will describe the curved line，G H M O．F G， L H，M N，represent some of the tangents－the main features and principle of this curve be－ ing one，as shown in fig．3，and the revolution of the curve drawn by the instrument，fig． 1 ， round its axis，L N，produces fig．3，which has a surface with an equality of all its tangents drawn from the curved surface to its axis，－ hence the use of the instrument，fig．1．That the curve thus generated will produce the re

