Stivutifir Meltusuntri．

For the Scientific American．
Tanning－－Practical Remar
（Continued from page 192．）
Tanning is a chemical operation very little understood by most persons engaged in the business．The gelatin of the hide united with the tannin of bark，and other substances，forms a new article，which we call leather．The af finity between the two materials is so great that when brought in contact they instantly unite．This may be seen by making a solu－ tion of glue，（which is the gelatin，or jelly of hides，）and water，and pouring a portion of it into a tumbler of liquor，as used by tanners， －they will unite and sink to the bottom，in that form，useless．I would here remark，tha this is a simple and useful test to decide wheth er the tannin is all exhausted from the liquor which the tanner would do well to attend to If there is $n o \tan$ in the liquor the gelatin will rise to the surface a milky scum．If the tan ner in the early stages allows his liquors to be come too stale，the jelly will flow from the hide into that liquor，and if that liquor，as is often the case，is pumped into the leeches， the same union takes place－and the tanne finds a slime settled on the top of his bark，in the leech，which he cannot account for，while his liquors are not of the strength he expects． It is the business of the tanner to so unite them as to make them the important article we are describing．Before entering into the process，however，it may be well to describe more particularly，the material generally used in the United States．
The outer coating of the hemlock，and va－ rious species of the oak are the principal．The former for the great body of sole leather－the latter for the various harness and upper leath－ er．The trees are felled in the season when the sap is ascending－from 1st May to 1st Sep tember－though usually only from May 15th to August；and the bark is easily peeled off in sheets of any required length，but usually four feet long．It should be suffered to lie with the innner surface exposed to tho sun one or two clear days，to dry up the sap on that surface，when it should be gathered into piles of a square form，in a dry place，on poles above the ground，and be protected by large pieces laid carefully on the top of the pile．The body only is peeled in America，except the larger branches of the oak；while in England the small limbs，and even twigs，all that will peel， are saved，and thought to be stronger than the body bark．Thirty days of dry weather will cure the bark sufficiently for use．But in a large business it is drawn to a road side，afte harvest，snd piled in like manner，and is suf fered to remain until fall or winter，when it is drawn into the tannery，and stored in large piles in the open air or in cheap open sheds and taken into the tannery as wanted．At the North this is usually done in winter，which makes good sleighing，almost as important to the tenner as bright skies in June and July Chemical tests give to hemlock bark only $3 \frac{3}{4}$ to per 6 cent．tannin．American oak not more than half as much．While English hedge－ rows is 16 per cent．Various other foreign substances contain tannin．Valonia，of Tur－ key，or the acorn cup and ball，gathered in a green state，is the favorite in England，and it is believed that the great burr oak of the mid dle－states yield，an annual crop of the same material which，if gathered would be sufficient for all the tanning of America－and save the destruction of our noble forests now going on at the north so rapidly．The strongest arti－ cleknown is kutch，imported from the East Indies，evidently an extract boiled down to salts－which contain about 55 per cent．pure tan．It is too expensive for common use in this country，but is much used in England，in liquors for heavy stock．It is computed that for every cord of hemlock bark four trees are peeled，and one cord will tan five hides．If the whole quantity of leather is $1,000,000$ sides， 200,000 trees are annually destroyed to furnish the bark．
［The next article will take up the subject o making the Liquor Leeches in which it is

History of Propellers and steam Nav gation
 ［Continued from page 200．］

More than one plan of different motion，ha been devised to make the paddles enter and leave the water in a vertical position．One lan is to make the upper and lower edge hange position，and enter the water at a dit ferent angles．Another is to turn the side edg es，or feather the paddles，which will produc the same effect，but requires a different ar angement of machinery．The plan present ed here was the invention of Adolph Heilbron of New York，and was patented in 1829. evolving motion is given to the paddles，by which they dip into and leave the water as re resented in figure 1．The buckets are each xed upon an arm，which radiates from the
entre of the wheel

Fig． 26.

In a wheel so constructed，the paddles ma be made to enter the water edgewise，and be turned so as to act upon it at any point which may be preferred．The paddles which are out of the water are all feathered，or turned edge－ wise，so as to experience but little resistance rom the wind，and to require a very shallow box or casing to protect them on each side of the boat．A wheel of this description may be mmersed in water to any depth which may b required，or it may be entirely under water， where the depth is sufficient ：should such a mode of fixing it be thought advisable，the pro gress of
thereby．
hereby．
great advantage anticipated from thes paddles is，the avoiding of those numerous and perpetual concusions produced by the striking of the water by the ordinary floats，which auses a continued，distressing，and very inju ious tremulous motion．They enter by the edges，and are gradual brought into action

Figure 1 represents one of the said wheels of eight arms or paddles，as it appears when in finished state，and as applied to the side of vessel ；and figure 2 is a view，on a larger cale，or the central part of the said wheel，as seen from the opposite side，or that nearest to the vessel，for the purpose of showing how the paddle－arms are held and supported in their places，and yet permitted to turn or feather at he proper instant，while the whole wheel turns ound．In these several figures A－is a ircular disk or plate of cast－iron，having a rim or ring，rising on one side to a sufficient height to give strength and solidity to the said circula plate，and also to take the brasses，C C C，
hrough which the paddle－arms or axis， DDDD ， re permitted to turn．The central block metal E ，may be cast in one piece with th disk or plate，but will be better detached，and fterwards fixed to it by screw bolts．The dis or plate，A A－with its centre block E ， forms the central part of the paddle－wheel which must be firmly keyed，or otherwise fix－ ed upon the main shaft，F ，which derives its
retary motion from any power applied within
the vessel，and this shaft also passes freely the vessel，and this shaft also passes freely
through the centre of a metal wiper carriage， through the centre of a metal wiper carriage，
which is firmly and immoveably fixed to the side of the vessel，for the purpose of operating upon the wipers or projections， H H ，of the paddle axis in order to produce the feather－ ing of the paddles．To effect this，the outer face of the wiper carriage presents two annular urfaces，or eccentric grooves，or one will an－ wer，to make the paddles turn or feather． The wipers or projections on the axis of thes paddles，are projections of metal，crossing each other so as to project atright angles from the axis of the paddles，and as these wipers come into contact with one or other of the annualla urfaces，the several paddle axes will each make a quarter turn or revolution．Thus the wipers， $\mathrm{Z} Z$ fig． 2 ，lie with their flat surfaces upon one annualar surface of the wiper carriag es，and the inner annualar surface then presents itself，and acts upon the wipers to turn them round；consequently，the inner wi pers will now assume the flat position，and will continue in it，until they are again brough by the motion of the wheel，into contact with the ends of the outer annular surface．

For the Scientific American
 Respiration．

Respiration consists in the inspiration and expiration of air：the former is done by rais ing the ribs and depressing the diaphragm the latter is effected principally by the elasti－ city of the ribs and contraction of the muscles of the belly．The whole extent of the air tubes in man，taken collectively，has been cal culated by Hales at about 20，000 square inch－ es，and by Munro at twenty times the surface of the human body．Man respires，on an ave age， 1000 times in an hour；and，as the amount of air required for each respiration，is wenty－two cubic inches for an adult，about 3,500 gallons are daily brought into contact with the air－tubes，and blood－vessels of the lungs．Experiments have shown that the average amount of carbon given off is about six ounces in twenty－four hours；three indi－ viduals，therefore，will evolve earbonic acid containing，at least one pound of carbon．The following estimate will give some idea of the arge quantity of carbon consumed by man alone．

Tons of Carbon Cub．in．Carbonic aci consumed daily．produced daily． $\begin{array}{llcl}\text { Boston，} & 19 & 5 & \text { billions．} \\ \text { New York，} & 64 & 17 & \text {＂}\end{array}$ Whole Globe，126，48 17 ＂
34 Accordingly，the annual consumption of ca on，by man alone，may be estimated at about $50,000,000$ tons，and the annual production of carbonic acid at $160,000,000$ tons．
The volume of oxygen that passes inward exceeds that of the carbonic acid which is ex pired in the proportion of 1174 to 1000 ；and early 15 per cent．more of oxygen is absorbed by the lungs than is given out in the form of arbonic acid．About 45,000 cubic inches oxygen are daily consumed by an ordinary man， 40,000 of which go to form the carbonic acid produced during the same period．
In the respiration of vegetables，carboni acid is absorbed，and，by the agency of ligh decomposed，assimilating to their own use car－ bon and evolving oxygen．A necessary equi－ librium in the atmosphere is thus maintained by the two great systems of organic nature animal and vegetable，each counteracting the influence of the other by those processes es sential to their nourishment and support．

J．W．©．

Grafting Grape Vines．

Mr．Curtis stated at one of the ag ricultura neetings in Albany，that he had been success－ ul in grafting the Isabella on the wild grape He takes about fifteen to sighteen inches of the root of the wild vine，and inserts in it cleft or＂split＂grafting．The vine is planted so that the connection of the stock and scion will be just below the surface of the ground．－ The operation is performed in the spring befor the vines come into leaf．

Cure for Colds．
Three cents＇worth of liquorice，three cents＇ worth of gum arabic；put them in a quart of warm water，simmer them till throughly dis－ olved ；then add three cents＇worth of para
goric，and a like puanity of antimonial wine．
Letit cool，and sip whenever the cough is troublesome．It is pleasent iufallible，cheap aud good．Its cost is fifteen cents．

LITERARY NOTICES．

Specimens of the Stone，Iron，and Timber Bridges \＆c．，\＆c．of the U．S．Rallroads．By George Duggan，Architect，and C．E．－Part III． ies on our table，and we are right glad to see this and to perceive that since the publication of the se－ cond part－a month since－the list of subscribers（in－ cluding the most eminent in the engineering profes－ sion，and consequently those most competent to form a correct opinion of the work）has been doubled，still as it will require many hundred sucseribers to pay the mere expenses of engraving and printing，we sin－ erely hope Mr Duggan will be accorded the support and encouragement necessary for the completion of this truly national work，in the manner he contem－ doubt－judging by what he has already done－he is fully competent to carry out，with fair encoura is ment．It is a work that was a great desideratum，and must prove of great benefit to the engineering profes－ sion generally，and is specially to the Tiro in practical ongineering and mechanical knowledge；in truth it strikes us，that it would require years of labor and patient toil，on the part of a young engineer to pre－ pare the drawings，and collect the information that will be embodied in this work，and can now be secured or the trifing sum of $\$ 9$ ．Part IIt．contains beauti－ trical views of the elegant timber arch， 275 feet span at Cascade Creek，Pa．，on the line of the New York and Erie Railroad ；and of a plank bridge 100 feet pan，across the Mohawk river，near Rome，on the ine of the Utica and Syracuse Railroad，with the es－ timates，specifications，bills of timber，iron，\＆c．，\＆c． As we understand，the cost of the work will be raised to $\$ 12$ ，or $\$ 1$ per part，to those who neglect to remit their names and subscriptions before the 1st of May next，we would advise those of our friends and sub－ time，as the subscription list will be closed at the time mentioned，and the names of the patrons and sub－ seribers printed in the body of the work immediately after．
No． 11 of Shakespear＇s Dramatic Works is now rea－ $d y$ ，it contains the comedy of＂As You Like It，＂em－ lilished witha fine eugraving of the charming Rosa－
ind．Phillips，Sampson \＆Co．，Publishers，Boston， or sale by Dewitt 5 cents．
R．B．Fitts \＆Co．，Boston，have just issued a new and cheap work upon Fowl breeding and rearing；it is the best work for the price that we have senne

rice 25 cents．

Uses and Abuses of Air．－This is a neat volume Hall，N．Y．，This is a work which should form part of every man＇s Library．We will have more to say about this book next week．
 is commenced a bout the 20th of Sept．each year，and is
he best paper for Mechanics and inventors published in the world．
Each volume contains 416 pages of most valuable eading matter，and is illustrated with over
500 MECHANICAL ENGRAVINGS NEW INVENTIONS．
$\square T$ The Scientinc Americanis a Weekly Journal of Art，Science and Mechanics，having for its object the
advanement of the INTERESTS OFF ME CHANICS， ber is illustrated with from five to TEN original EN－
GRAVINGS OF NEW MECHANICAL INVEN－ patented ar Washington being inventions ilustrated in the Sch are entific American．It also contains a Weekly List of
Patent Claims；notices of the progress of all Me－
chanical and Scientific Improvements；practical di－ eections on the construction，management and use of
all kinds of MACHINERY，TOOLS，\＆c．\＆c．This Work is adapted tobinding and the subscriber is posses－
sed at the end of the year of a large volume of 416 pages illustrated with upwardsof 500 mechanical engravings．
TERMS：
$\$ 1$ Single subscription，$\$ 2$ a year inadvance； $\$ 1$ for six month．Those who wish to subscribe h and
only to enclose the amount in a letter，directed to A PRESENT：
To any person who will send us Three Subscribers，
we will present a copy of the PATENT LAWs OF THE NNTED STAEES，a cogy of the PATENT LAW8 OF THE tive to PATENT OPFICEA BUSINESS，including full direc－
tions for taking out Patents，method of making the
Specifications，Claims，Drawings，Models，buying， tions for taking out Patents，method of making the
Specifications，Claims，Dra wings，Models，buying，
selling，and transerring Patent Rights，\＆ec． N．B．－Subscribers will bear in mind tha
ploy no Agents to travel on our account． Publishers of the Scientific American， 128 Fulton：
street，New York．All Letters must be Post Paid． Inducements for Clubbing．
5 copies for 6 months，$\$ 4 \mid$
12

15

