

For the Scientific American

Rallroad Accidents．－－A Suggestion．
Very many accidents，attended with loss of life，happen every year on our Railroads，and for the purpose of illustrating my ideas in this communication，I divide them into two classes， viz．，those that happen to persons who are run over，who may be on the track in advance of the train，and those that happen to individu－ als on the train，or，may be，at the side of it． A numerous portion of the latter class are by reason of persons falling between the cars on to the rails，and those who may be on the out－ side of the rails（perhaps in haste to get on board，）accidentally stumbling and falling across the rails；the result in either of the two cases of the latter class named above is a ter－ rible death．
What I would propose as a safeguard，for the prevention of accidents，and death to those who may be on the train and fall between the cars，and to those who may be on the ground outside of the track，to prevent their falling on the rail by stumbling，or otherwise，is simply this ：－I would in the open space，between the tracks of a car，and in the open space between two cars when attached together，make a par－ tition（I call it a partition for want of a better term）which would close up the space between the rails and the body of the car；this parti－ tion can be easily made and might reach near－ ly down to the rail，and being directly above the rail and in the rear of the truck，would not come in contact with any thing near the rail． This partition of one car，and the partition of another，when two cars are attached together， would meet each other and thus form a per－ fect and continuous guard from one end of the train to the other，against the class of acci－ dents I have adverted to．One life would have been saved on the Manchester and Lawrence Railroad，on the 15th of Dec．，had there been a guard of this kind．Precaution．
Improvement in Gold and Sllver Pencil Cases．
It will be observed on our list of patents this week，that one is granted to Mr．Albert G． Bagley，New York，the celebrated gold pen ma－ nufacturer．We have seen his invention，and consider his pencil cases（his pens need no re－ commendation）to be the neatest in the mar－ ket．Mr．Bagley has a very fine mechanical mind and exquisite taste．He is always get－ ting up something new and good，and the pa－ tent just issued combines one of the most ori－ ginal and uncounterfeitable inventions in its line that has yet been brought before the pub－ lic．

Propeller for Canals

Mr．Joseph Grant，of 138 High street，Pro－ vidence，R．I．，has invented a propeller for ca－ nals to prevent the washing of the banks， which presents some good features．He em－ ploys a tube or tubes rnnning the entire length of the vessel，and places a screw in the after part of said tube or tubes．The water comes out behind without creating any side surges， and the vessel is very compact and snug for entering locks．He has taken measures to se－ cure a patent．

Machine for Repairing Roads． Mr．N．Potter，of East Hamburg，Erie Co．， N．Y．，has invented a machine which re－ moves heaps on the sides of ruts，and fills them up at the same time．It can also plow up high places or heaps on the road，and by back moveable scrapers，the dirt can be di－ rected to the middle or from the middle of the road．It is drawn like a wagon and is other－ wise very simple．

Measures have been taken to secure a pa－ tent．

New Rotary Engine

Mr．George Creary，machinist，of this city， has invented animproved rotary engine，which is said to remove all the decidedly good objec－ tions made against the other engines of the same class．It works on the expansion prin－ ciple，and it takes in the steam at two oppo－ site sides，and does not work the valves as is commonly the case，by the pistons．

New Way to Manuracture Shot．
It is well known that for a number of yea past，all our shot for fowling pieces has been manufactured by dropping the molten lead a great distance．For this purpose tall towers were erected，as ably treated in an article in the Franklin Journal，by Mr．Ewbank．The present invention，which has been patented both at home and abroad，by Mr．David Smith， of this city，is designed to make the shot in any building，to obviate the necessity of using tall towers；and it will be seen that the prin－ ciple of the invention is founded on scientific principles，and is highly ingenious，and con－ sists in driving a current of air in a contrary direction to the falling lead，which combined with the velocity of the falling lead from a low height（about 50 feet）will cool the metal as well as if it fell from a great height；the velo－ city，according to the size of shot desired，be ing the cause of this．This cut is an elevated section of the conduit passing through two floors of the building．

A A is a vertical metal tube，about 20 inch es in diameter．The lower end of the tube is a truncated cone，which rests on a water cham ber，B．C C is an annular chamber．The upper surface of this chamber is perforated， through which air is admitted to the body of the tube，A ，the air being forced in passing through the tube D ，by a blower，to give the air the required velocity in the tube． E is a shute to guide the shot into the box，F．G is a place to remove it．The shot drops down the tube，A，and passes through the water into the chamber，F．The upper part of the tube has a trumpet mouth，to allow the air to pass
freely out at the widest part．H is the pour－ ing pot，resting over the concentric chamber 1 ，which is supported by six arms，secured inside on the tube，as indicated by the diame－ trical flange at the bottom of the enlarged part above．The pouring pot has a perforated bottom to diffuse the molten lead over the area of the channel， L 1 ，and L is a spill chambe to receive any lead that may run over，not to let it go down the tube．The metal thus fall－ ing must have an upward current of air that will meet the lead with a velocity，for the shor distance，equal to that which the shot meets the air in the great distance through which it falls in high towers．By increasing the cur－ rent of air，an equivalent for any fall may be obtained．
Shot by this process is now manufactured Water street，this city，by Messrs．Thos． 0 Le Roy \＆D．Smith．The machine is in per－
fect operation，and makes far better shot than by the old high tower unethod；for this rea－ son ：－＂The shot in falling 200 feet in the high tower，acquires too great a velocity，and they are injured by the foree with which they strike，while in the new method，the shot is supported by the ascending current．＂
This is one of the most original and best in－
long time，and as in a great number of such cases，the inventor possesses a real modesty and quietness regarding his invention．
showing one car on it；A is the car with three wheels，two at one end and one at the other ； B is the table： C is a raised ledge on the side of the table，on the upper surface of which is marked a scale of inches and tenths，pointed to by the index D to show the distances moved by the cars； E E are screws for leveling the table； F is a spiral spring projecting from the car so as to press upon the corresponding part of the opposite ear．Each car has such a spring；so that by these they mutually repel each other when pressed together．
Fig． 2 is a side view of a part of the table with the cars on it；G is the table $; H$ is the raised ledge，hiding parts of the car－wheels， I I are the spiral springs；$K K$ are the indi－ ces；L L are projecting parts of the cars，to be brought in contact when the springs are sufficiently compressed for action．
When these projecting parts of the cars are brought together ；they are held in that posi－ tion by a clasp，which may be detached with－ out giving any impulse to the cars，only set－ ting them free for the action of the springs． The cars are 7 inches long and 3 wide，weigh－ ing 10 ounces each；but a small part of the table is shown in the figure．It should be four or five feet long．When the table is properly leveled，and the cars pressed together and clasped，they are prepared for experiment．When prepared in this way，on detaching the clasp each car ran 13.7 inches．

On putting 5 oz ．on one car，so as to make it 15 oz ．，the loaded one ran 7.3 inches and the light one 16.5 ．
When the load was 10 oz．，making with the weight of the car 20 oz ．，it ran 5.3 inches，and the light one 18 inches．When increased to 30 oz ．it moved but 2.8 inches，while the light one moved 19.3 inches．When I placed a hea－ vy piece of iron behind one car to prevent it from moving，the other being light，ran 27.5 inches，and when loaded to weigh 20 oz ．，it ran 15 inches．

Silas Cornell．
F．Y．M．B．School，Providence，R．I．
［We will give the experiments in a tabled form next week．

Naval Sclence．

Commander Jerningham of the British Navy is concentrating the broadside of the ship Lean－ der．The object of this is to ensure the certain－ ty of the delivering the first broadside with the most deadly effect；the whole of the guns should be fired simultaneously or the smoke from a singlegun would obscure the object at the moment the otheis are to fire；and after the smoke has rendered everything invisible from between decks，the only chance of getting a sight of the enemy is from the upper deck， or aloft，as long as the masts are leftstanding． Captain Jerningham＇s plan，therefore，which was satisfactorily proved on board the Welles－ ley in India and in China，in 1837，and on board the the Excellent in 1847，is one that may be adopted in every ship without any ad－ ditional fittings，and that in a few hours．The guns may be brought into position to cover a horizontal line varying in length from one inch to fifty feet，at any distance up to six thousand yards within the angle of training of the guns in the ports，and the fire repeated with the same precision and rapidity as is now done with the single guns．
Improvement in the Manufacture of Vcivet．
A manufacturer in Lyons，France，has com－ menced to make both plain and ornamental silk velvets of three yards in width．The qua－ lity is said to be equal to the present narrow web．We have doubts regarding the possibi－ lity of making such wide goods，of equal qua－ lity with the narrow．

Improved Hot Air Engine．
We learn by the Philadelphia News that Dr． Evan J．Pursey，of that city，proposes to con－ struct an engine to be propelled by heated air， which combines many advantages over en－ gines of this kind that are in use at present The project，we have heard，has occupied the attention of the D ．for a long time．

An artesian well was sunk in Leicester Square，London，lately，and a continuous stream poured forth to supply Buckingharn Pa ． stream po
lace，\＆c．

