Stimutific American.

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL AND OTHER IMPROVEMENTS

NEW YORK DECEMBER 8, 1849.

BUCKWHEAT SEPARATOR.---Fig. 1.

This machine is the invention of Messrs. Calvin D. Vose and Thomas L. Vose, of Mehoopany, in Wyoming County, Pennsylvania, and for which he has taken measures to secure by patent. Fig. 1 is a longitudinal vertical section, showing the interior, and fig. 2 is a transverse vertical section. The same letters refer to like parts, on both the figures. A A is the frame, consisting of posts nid tramoverse timbers. B is a hollow stationary cylinder, formed of two parts, the upper, C, can be removed at pleasure; D is the driving shaft working in suitable bearings and carrying revolving cylinder, E. This cylinder is made of wood but is covered with iron plates screwd on to it, and which are covered with studs, S S. F is the driving pulley; it is cased over, and has fan blasts blades inside, and answers both for puiley and blower. It communicates

at the end with the outside and with the in-
side, driving the blast through the pipe, H , to cleanse the grain; I is the hopper, to receive

Density and Elasticity of Air.
The elastic force of air varies in exactly the same proportion of its density; and this simple and important law, which is called, after its discoverer, the law of Mariotte, applies not only to air, but to all gaseous bodies when subject to such variations of pressure as can be readily commended. Air has been allowad to expand into more than 2000 times its usual bulk, and it would have expanded still more if a greeter space had been allowed. Air has also been compressed into less than a thousandth of its usual butlk, so as to become denser than water; but itselasticity has not been
the uncleaned wheat, and J is a recess at the opposite end of the chamber of the hollow cylinder, through which the wheat and lightmatter is forced at the opening, 0 , down into the passage, K, to receive the action of the blast, as represented. P is a slide to graduate the size of the opening, 0 . When the cylinder, , is revolved, it stirs the buckwheat and hulls it, whes: the "maller and heavy extransous particles are driven through the fine screens, W W , (best seen in fig. 2.) and fall down, while the buckwheat and light matter is forced up and into the passage, K, to be acted upon by the blast, as represented, and the lighter particles separated from the good grain, which falls upon the inclined screen, L, which is very fine, and receives a vibratory motion-shaking down the last of the heavy extraneous impurities, allowing only the good clean buckwheat to escape at its mouth into a proper receiver The lower screen, L , is fixed on a pin, T , and N is a bar attached to the end of it (the screen); V is a helical spring, also attached to the screen, and to the frame. M is a cam on the end of the shaft, D , and as it revolves it comes in contact with the bar, \mathbf{N}, striking it, and thus shaking the inclined screen, L, below. From the two cuts a good idea of the nature construction and use of this machine will be obtained. The buckwheat, by being beaten in the hollow chamber, B C, by the toothed revolving cylinder or roller, E, will be very effectually hulled, more especially as the orifice, 0 , (best seen at the end, fig. 2) can be graduated to any size, so that a great pressure may be employed, if required, ${ }^{5}$ to force the grain into the passage, K ; and thus the particles of the grain are rubbed upon one another, and act upon themselves to clean the grain in the same way as if the berries were rubbed with sand paper. The good arrangement and the principle of action combined, in this machine, cannot be mistaken. More information, (p.p.) may be obtained of the inventors.
exactly determined at these extreme degrees, either of condensation of rarefaction. so that we have no proof that the law of Mariotte applies so extensively. On the contrary, recent experiments on the compression of gases renderit nearly certain that they all vary from this law when subject to very great pressure their density being increased in a greater ratio than their elasticity ; this variation, however, is less in air than in most other gaseous bodies and the simple law is found to appply to it vary accurately when condensed as much a 50 times, and also when allowed to expand to several times jts usual bulk.

Cusfinl 解urints.

Clarification by $\begin{gathered}\text { Esgs, or } \\ \text { stances. }\end{gathered}$

The effect of the albuminous and gelatinous matter is principally remarkable in the vinous liquids. It is on this account that they are employed when it is required to fine wines and other fermented liquors; that is to say, when we wish to give them that high degree of limpidity which they can rarely acquire and pre serve by mere repose. In this case, nothing more is required than to dissolve eggs, isin glass, hartshorn shavings, or any similar substance, in a small quantity of the liquid, and to mix this solution, cold, with the remainder. A short time after a kind of net-work is observed throughout the whole mixture, which, soon contracting together, collects all the foreign substances from the fermented liquor, and carries them with it to the bottom of the vat.
In other instances, it is necessary to heat the liquids with which the eggsare mixed, and it is only at the moment of ebullition that the clarification takes place; most of the foreign made syrups are clarified by this process, and no others has yet been discovered that produces a better effect.
It is also observed, that egg alone is not always sufficient to clarify liquids, even if they are raised to a degree of temperature sufficient to make them boil, but that it is necessary to as sistits operation by means of an acid, or a salt with a redundance of acid. In proof of this, may be adduced what takes place in the clarification of whey, for it is only when there is added to this fluid at the moment when it begins to boil, some cream of tartar or vinegar that the egg with which it had previously been mixed, coagulates, and carries with it the cheesy matter, which impared the transparen cy of the whey.
It is absolutely necessary to separate the magma which forms in liquors that are clarified with egg, especially when in order to concentrate those liquids, it is necessary to evaporate them by the aids of ebullition. With out this precaution this magma would dis solve, and these liquors would become more turbid than they were previous to the clarifica. tion- It proceeds from a simuliar cause that broth, from which the scum has not been taken off, always retains a disagreeable appearance and will not keep.
Though the employment of albuminous mat ter for clarifying the juices of certain vagetables be of utility, it is however not without its inconveniences. Amongst others, one that has been remarked is, that it changes the nature of these fluids in such a manner as partly to destroy the medicinal properties. It often happens to certain pharmaceutical preparations, such as decoctions of medicines, that when in order to clarify them, recourse has been had to white of egg and heat, they are almost without effect, unless we take care to double the proportions of the ingredients that ought to enter into their composition. Dr. Lewishas even remarked, that this operation deprived the syrup of white poppies of all its powers.

Pumplin Soup.

Into two quarts of cold water put three pounds of pumpkin, cut into thin slices, peeled and with all the seeds removed; two large onions, and sliced, with a small stick of celery cut into very small pieces. Boil these togeth. er slowly for two hours and a half, and then after adding an ounce of dripping, two large tablespoonsful of flour, and of pepper and salt as much as pleases the taste, boil for half an the boiling.

