Inde Ink.

A Cbinaman named Chen-ki-rouen bas written a monograph on the famour Chinese ink, more commonly known here as India ink. We find the following interesting extracts, regarding its bistory and preparation, in the Deuteche Industric Zeitung.
Many articles are found in the extensive literature of Chioa written by their learned men about the paper; ink, and brushes that they use for writing, but unfortunately very litite is said about the technology of their inks. It is quile otherwise in the recent book written by Chen-ki-souen, for be describes every stage of its preparation with greataccuracy and in detail.
According to our Celestial author; a kind of pigment ink was discovered 2697 to 2597 B. C. It was employed for writing on silk with a bamboo rod. Afterward an ink was prepared from a certain stone (encre de pierre), which is still known in China as ché-bëi. It was not until 260 or 220 B . C. that they begnn to make an ink from soot or lampblack. The soot was obtained by burning gum lac and pine wood. This ink was made at first in round balls and very soon supplanted the stone ink.
For a while the province of Kiang-si appears to bave had a monopoly-of ink making. Under lie dynasty of Tang, in 818 to 805 A . D., there was a special officer called an inspector, who had charge of its manufacture. He had to furnish the Chinese court with a certain quantity of this ink annually. Some of the factories seem to have been "royal Chinese" factories. The Emperor Hinan-Tsong (713 to 758 A. D.) founded two universities, to which be sent 336 balls of juk four times a year.
The most celebrated ink factory in China is that of Li-ting-kouëi, wholived in the latter part of the reign of Tang, and is said to have made an excellent article. He made his ink in the shape of a sword or staffi, or in round cakes. The test of its authenticity consisted in breaking up the rod and putting the pieces in water; if it remained intact at the end of a month, it was genuine Li-ting-kouei. Since the death of this celebrated man there seems to have been no perceptible advance made in the manufacture of India ink.
In the manufacture of lampblack nearly everything is used that will burn. Besides pine wood we may mention petroleum, oils obtained from different plants, perfumed rice flour, hark of the pomegranate tree, rhinoceros horn, pearls, musk, etc. Nordoes fraud seem to bave been entirely wanting. According to Chinese authorities, the principal thing is the proper preparation of the lampblack; the best smells like musk, and the addition of musk not only serves:to give pror gooats the resemblance of fine ones, but really makes it worse.
The binding agent plays the chief part next to the lampblaek; ordioary glue and isinglass alone aro now zoed. In old times glue made from the horns of the rhinoceros and of deer was employed.
Good Chinese ink improves with age, and should not be used fea few years after it is made. It is not easy to keep it as it must be protected from moisture. Some persons, in rubbing it up, make circular movements that soon ruin it. It is better to rub it in straight lines back and forth with the least possible pressure.

FIRE RSCAPE.

The fire escape herewith illustrated consists of balconies for each story, or for alternate stories, of a building, arranged on central pivots, on which they may be swung in such a way that the rising end of one will meet the lowering end of the next, thus forming a zigzag passage down whicb people may pass. Fig. 1 shows the balconies so arranged, the intermediate ones being permanently attachod to the wall. The balconies are firmly bolted to the central shafts, which are square in the parts fitting the balconies, and which extend through the wall (Fig. 3), and are supported in bearing plates bolted to each side of the wall. Inside of the wall the pivots or shafts gear with a working lever by means of a touthed segment on each shaft and a vertical toothed bar gearing with the segments aod also with the lever, as indicated in Fig. 4. The lever is located at the base of the wall, where it may. he inclosed for its protection against fire. The vertical bar extends to the highest shaft, and is made in sections connected by swivels. The outer eads of the shafto bave bearings in a long post direrging from the vertical line, in order that the rising end of one balcony will project beyond the falling end of the other, to provide safe transfer from one to the other. The balconies are made of sheet iron, with outwardiy curved sides at their upper edges to deflect the flames, and are also made with double floors, between which the air will circulate. thus keeping the upper floor cool. Along the inside of the outer side plate of the balcony is a hand rail. The stationary balconies are made narrower than the others, so that persons may drop from one to the other without danger of falling to the ground. Fig 3 is a vertical section through the wall.

The inveation bas been recently patented by Mr. William S. Cassedy, of Kelly's Station, Pa., who shoould be ad dressed for further information.

The French are experimenting with a new rife, designed for infantry use, which is said to discharge three projec. tiles at a time.

A HEW DLAE TAE OR BXHAUBTER.

To economically move large quuntities of air., is a subject of great importance in many of the industriey, and antere as one of the principal factors in the ventilation of large buitdings. The accompanying engraving shows a fad of novel construction, which, although simple and of but few parts, may be readily and easily adjusted to suit cooditions. The fan works on the principle of the screw propeller, and by a simple device the blades may be set at any pitch, so that the quantity of air moved may be varied to any point between the minimum and maximum capacity, and the same device enables the blades to be set so as to move the air in

NEW DIEX FAN OR ERHAUETER.

either direction. There are six curved blades made of sheet steel, having an increasing pitch augmenting the power and the amount of air moved. To each blade is riveted a heavy wrought iron arm having a thread cul upon the end, which cerver inid the bub and is set by meansof a lock nut. This arrangement is indicated very plainly in the drawings of detached parts, representiug the shaft, hab, and one blade in position, and the blade alone. The cast iron frames and sheet steel band make the "custoff" in which the blades run, and cause a strong suction or force curyent. From the above it will be readily understood how the current can be changed in direction without disturbing eilher the belt or pipes. The shaft is in one piece, running in journals which are adjusted by two set screws, as shown. The fan may be fastened to the ceiling, the journals having been inverted.

The fan is noiseless in operation, and as the air is free to pass through the whole area, the current is much slower than in the usual forms, thus avoiding the unpleasant buzzing sound
with the oxhaust fan ras by gas eagizes or other small motors. These fans are now. being manufactured by the Simonds Manufacturing Company, of 50 Cliff Street, New York city, who have received many letters bighly commending tbe fan and dwelling upon the large amount of air it moves, its lightness and simplicity, and the economy its use insures.

Mall statintice of the Wrorld.

The statistics of the Universal Postal Union for the jear 1881, published by the International Bureau at Berne, show that the United States anks first in number, with 45,512 offices, Great Britain being next with 14,918: Japan leads Russia, Austria, Italy, Spain, and British India. Sivitzerland ranks first in the relative proportion between the number of offices and the population, having an average of $\mathbf{0 8 5}$ inhabitants to each post offlce. In the number of letters carried Great Britain ranks first with $1,229,864,800$; tie United States next with $1,046,107,848$; then Germany with 563,225,700. The Argentine Republic stands at the bottom of the list. The United States used the moat postel cards. In respect to the number of letters and poótal cards to each inbabitant, the countries ranked as follows: Grent Britain. 38.7; United States, 27.3; Switzerland, 199; Germany, 158, The United States ranks first in the number of newspapers conveyed in the domestic mails with 852,180, 792 ; Germany next with 439, 089,000; France, 320,188,6sf; Great Britain, $140,789,100$. Germany leads in respect to the gross amount of revenue with 205,324,215 francs; Onited States next with $194,630,444$ franes; Great Britain third wilh $170,600,000$ ranes.

Cofteo and Alcohol in Brasil.

According to the statement of the Vice Director of the Rio Janeiro faculty of medicine, it appears that in Brazil, where great quantities of coffee are used and where all the inhabitants take it many times a day, alcoholism is completely unknown; it is further stated that the immigrants arriving in that country, though beset with the passion for alcohol, contract little by little the habits of the Brazilians, acquiring their fondness for drinking coffee and their aversion for liquors; and as the children of these immigrants brought up with coffee from their early years never contract the fatal habits known to their parents, it would seem that the number of drunkards in the country is in inverse ratio to the amount of coffee consumed. A South Americas conrepondeat of the Moilial Tince confloms the above statements, asserting that the number of cafes is the large citien of Brazit-where maltitudes of persons from the highest Hown to the lowest classes go in to take a cup of that delicious beverage which none but Brazilians know how to make properly-iteearmous, while drinking saloons or bars are very few, and their patrons fewer still.
It the above is correct, our temperance advocates might take a useful hint. Less oratory and more coffee would give better success to their efforts. The opening of a cheap coffee house alongside of every gin mill might have the effect to dry up the liquor business.

Scarlot Fever in Horsei.

For some time past scarlet fever among horses has at racted considerable attention, and committees from three medical sucieties are now investigating the subject. The disease was first described in horses, in 1514, and from that 1610 there are evidences showing its simultaneous'appearance in both horses and men. The conclusion has been d awn by some writers that it originated in horses and was by them communicated to man. The New York Sun reports Dr. John C. Peters, chairman of each committee, as saying:
"The most remarkable results have been obtained by D. J. W. Steckler, of Orange, N. J. He hed some equine virus sent to him by Dr. Withismes, of Edinburgh. Dr. Steckler inoculated twetve chlldren, who were afterward exposed to the ulsease of scarlet fever and did not take it. Tbat wea last May or June, He has inoculated two youtg colts and reproduced the disease among them, He failed with a calf, sbowing shat the horses wert more bus ceptible of the disease. Aoothor set of children was inoculated, all of whom were liviaryinethe same room where acase of scarlet ever had broken out. some who had been exposed belore the inoculation took the discase, but a hingarity escaped. There was only one case that lepted like fallure. Br: Steeker willcu livate. the firus and prove bis experiments. He is sure to meet: with great opposition, and possibly as much as Jenaer did, bat. I have no doubt he has made a discovery as great as Jenner's, and one that will prove as signal aa epoch in the history of medicine."
caused byair passing rapidly through small openings. When necessary a rapid current can be produced by reducing the size of the pipes. It can be put at either end or at the center of a pipe; in a wall or window, and will run equally well either horizontally or perpendiculayly. A 48 -inch fan now on exhibition at' the American Institute Fair, r nning at about 450 revolutions a minute, draws through the small bouse to which it is attached the great amount of 26,175 cubic feet of air each minute. It is run with a 8 -inch belt and uses 2 horse power. These fans were a warded the highest medal at the American Institute. The patented, Mr. L.
J. Wing, has perfected a plan of ventilating large edinces

Cleanliness in the stable, gnod ventilation, pure water, and eliable disinfectants, are the bot preventives.

Porouscion of the skull an al Meins of Diagnomis. In the course of an article in the Layoet, DEA. Hotertson tells us that in a case under bis care, pereussion of the kull revealed a painful area over the motnr:region of are side of the brain. The patient had loag been subject to convulsive seizures, mainly unilateral, and has greatly improved since the application of a series of blisters over this region.

