צricntific $\mathfrak{A m x r i c a u}$.

AMERICAN INDUSTRIES-No. 81

hemloce sole leather tanning

In all the northern counties of Pennsylvania, from Por Jervis almost to Lake Erie, a vast industry is conducted in the manufacture of hemlock sole leather. It is only about twenty years since this region was first largely occupied by tanners, but there are comparatively few sections here now, throug hout its whole extent, where tanners have not "pros pected," as it were, in looking out favorable locations for their tanneries. Every new railroad, and every minor branch of a road, running through land on which hem lock timber was standing. has added new facilities for reaching the bark supplies necessary for the tanner, and many such roads have been built expressly for this purpose; but the supply is yet abundant, on going back far enough from the thickly settled portions of the country, and probably will continue so for at least a generation yet to come. What we will do then, or rather what our children will do, is a prob lem which the tanner who las cheap to-day troubles himself very little about
In the illustrations on the first page of this paper we give a representation of a new tannery, but just well under operation, which is at once one of the largest and most com-
plete establishments of the kind in the world, the "Brunswick" tannery, of Messrs. Hoyt Brothers, of New York. It is situated in Tioga county, Pa ., about twent y miles from Blossburg, and forty miles from the New York State line, in the midst of a dense hemlock wilderness, where, for ten miles in every direc the bark on the trees will yield from eight the fifteen cords per acre nection with the Blossburg Coal Co., have built a branch railroad from Arnot to the tan nery, and it is expected that this road will give the tannery a large proportion of its supply of bark.
Only those familiar with the tanning business comprehend why it is that inthis country the tanneries are thus built way off in the woods. The answer lies on the surface.
It requires about 2,000 pounds of bark to make 150 to 175 lb . of good sole leather, and so, not counting at all the large ground space required by a-great tanner y, it is cheaper to take the hides to where the bark is than it would be to bring the bark to the seaports where the hides are imported, or the large centers where hides of domestic production are collected. This is not so much a distinc tive feature in upper leather and calfskin tan ning, where much less bark, proportionately, and a great deal more labor are required, nor is it true in regard to the sole-leather tanning business of any other couutry, for nowhere else in the world are to be found whole sec tions of country with such abundant supplies of bark, the growth of the original forests. In England, for instance, where the standard of excellence in sole leather was first made by the "butts" and "bends" so famous in all the markets of the world half a century ago, it is now a rare thing to see a thousand
cords of bark on cords of bark on hand at one time at any of the leading tanneries. Very little bark is used in any of the tanning there, its place being taken by gambier, valonia, divi divi, and myrobolans, from the East Indies, the Levant, and tropical sections of South Ame rica, and portions of Africa, with the mimosa from Australia. These tanning agents are

sweat pits, and here are the hide mills and beamsmen, the \mid pits, in an adjoining building, whose sides appear sunken handling vats coming next, and the lay-away vats extending, below the earth, only the roof being seen, but the floor of all down the length of the building. About midway down, which is, in reality, on a level with that of the rest of the and including a passageway to the structure at the right, is tan yard. The hides are taken here, as in fact they are move the scrubbing department, whence the leather goes to the from one portion of the tannery to the other all through the drying lofts, and thence to the rollers, in the front part of process, on light cars, easily pushed over tracks laid for this the same structure, where it is very near its place of ship- purpose. Two views of the sweat pits may be seen on the ment from the tannery. On the extreme left are the bark sides at the top of the page, one showing the arrangement heds; a large building is occupied by the mills for bark by which they are all reached in the common entrance from for bar rinding, adjoining which is the leach house and a boiler use, another structure being provided in which ar arge tanks for cooling the tan liquors.
The first operation upon the hide entering the tanning rocess is the soaking. This is always necessary, whethe green, salted, or dry hides are worked, to soften and clean them, but in this tannery dry hides are used exclusively which are principally imported from South and Central America, or received from Texas and California, the best grade of dry hides generally coming from Buenos Ayres and Montevideo. The hide, as taken from the animal, contains so much moisture that the weight of a sixty pound hide, if dried quickly in the sun or otherwise, to prevent putrefaction, will be reduced to about twenty pounds when dry. The freshly taken-off hide or skin needs comparatively little soaking, but only sufficient washing to clean it from blood and impurities; the dry hide, however, must be soaked until it is thoroughly softened, or brought he then than hem, as the hides are hung in " pits, or vaults as they more properly appear here, have double doors, and are made so that, when the hides arehung up therein, they will be as much as possible removed from any effect of outside air. Whén the wet hides are hung up here in a close atmosphere, kept at a uniform temperature he ir natural tendency to decay is likely to quickly manifest itself, and an incipient putrefactive fermentation soon be comes apparent in the strong smell of ammonia they i ff. The hide swells as thi proceeds, and the they give rots of the hairber until the hir "slip" when the hide has been sufficiently long in the sweat During this process, however, extreme care and the best of judgment are necessary; only hides of about the sam weight, character, and condition should be started together ad then frequent examinations must be made by the work an in charge, so that if any of them seem to have bee sweated sufficiently beforethey have all arrived at that stage the most forward ones may be immediately removed, as very short delay here would be highly injurious to the lea ther. Concerning the temperature which should be main tained in these sweat pits tanners differ widely in practice Formerly it was considered necessary to keep it down as low as 50° Fah., whence came the designation of this process as the American "cold-sweating" system, but now the tempera ture varies with different tanners, all the way from 60° to 75° Fah., the operation proceeding slower or more rapidly accordingly, although a still lower temperature may be advisable when there is danger from the condition of the hide. The hides themselves may be so managed that the heat they give off will keep up a proper temperature dur ing the greater part of the year, with the necessary wash ing of the floors and sides of the pits, and the use of a littl steam in winter, the ventilators being opened to allow of the escape of ammonia, which comes off freely when the putre factive fermentation is set up. Abundance of moisture in the atmosphere is also requisite in the sweat pit, but the pores of the hide, as hung up, being filled with water, will keep the surrounding air always damp. About a week i ordinarily taken for the sweating of heavy hides, thoug sometimes only three or four days are necessary, and, excep tionally, even less than that. As the hides come from the As the hides come from the sweats the hair has been so loosened that the greater por
tion of it will readil y come of tion of it will readily come off in a brief working in the hide mill. One of the views shows the operation of these mills, which are inprinciple nothing more or less than the old fashioned fulling stocks, in tended to pound and tumble o ver the hides without break ing or in any way injuring the surface. A stream o water is kept running on the hides as they are subjected to this operation, and a good part of the bair is thus with lit tle trouble removed. The hides, after being soaked, are liquors, and heavy, good-looking leather can be made therewith, but the leather is not as serviceable for wear as that made with bark. The tanners of nearly every other country are, however, compelled to use them because of the scarcity and high price of bark, the price in England now being equal to about $\$ 30$. per cord. Our sole-leather tan ners use bark only, its abundance here making it much the cheapest, as it is acknowledged to be the best tanning mate rial. Its cost, at most of the large tanneries in Pennsylva nia, will not exceed from $\$ 4$ to $\$ 5$ per cord, and the esta b lishment which forms the subject of our illustrations enjoys exceptionally good facilities for obtainiug a cheap and abundant supply, the bark sheds connected with the "Brunswick" being calculated to hold a stock of 10,000

In the view of the location and arrangement of the tan nery buildings, shown in the center of the page, but a limit ed idea of the extent of the business will be conctived unless it is remembered that these buildiniss extend over nearly thirty acres, and the plan is such that the progress of the stock, from the time it enters as raw hide until it leaves as finished leather, is never backward or over the same ground twice. The building in the foreground represents the shipping house for finished leather, where it is loaded directly upon cars, the tracks for which run through the building. Beyond this, and between the two largest structures on the grounds, may be seen the receiving and storehouse for hides, where they are unloaded direct from the cars. From the hide house the stock is first taken to the soaks in the front end of the great building to the left, which constitutes the yard proper; adjacent to this are the
back as nearly as possible to the condition it was in when first taken from the animal. For this purpose from three or four days to a week is usually required, adsometime slong. ar, dependent upon the condition upon hide, then of the ear, the water, etc. An abundant supply of pure water is one of the prime necessities of a large tannery, and it is
 important that it should not be what is commonly known as "hard" water. There is very little|milled before being put into the sweat pits, and if not suf natural spring or river water, of average freedom from solu- ficiently soft are thiown back into the soaks until they are. ble impurities, which is not suitable for tanners' uses, but a The "beam-work" of a tannery is well illustrated in the large creek, flowing from the hills and through the woods which surround the tannery, affords an ample supply of comparatively soft water then at the top of the page. Each hide is taken sepa are worked off, while the extraneous flesh on the other side yard is cleaned down to the true skin. This not onl y al lows the and beamser
sightly, and serviceable leather. Thirty bands are here em- which marks, for the strength of liquors that can be ordiployed at work over the beam, and great care is given to narily leached from hemlock or oak bark, without evapora this department, for mucb attention has been called to the sole leather. The best European tanners flesh their sole leather very closely, aud the custom of most Eng. lish tanners is to give the flesh side a smooth and clean ap. pearance by a kind of pasty covering, which certainly does not add to the value of the leather, although considerable increase in its weight is thus made. Without going to the extreme of close fleshing, which some Eur opean customers have desired, there has been great improvement among our tanners in this direction witbin a few years past, while no where is it a practice to put on any extraneous substance to cover up cuts or defects in the flesh, or add to the weight.
When the hide comes out of the soaks it is cut in halves along the back from the head to the tail, and these two parts are thereafter known as sides. This is the only "trim" usually made in bemlock sole leather before it is sold to the manufacturer, althougb in oak leather, and in the mixed tanage of oak and hemlock known as "union," it is common to cut off, and sometimes tan separately, the bellies, or pate, bellies and flanks, the leather being then known as "crops" and "backs" respectivelythe latter being nearly the trim of what is known asEnglish "bend" leather, while the "butts" would represent the hides thus trimmed of all the lighter or more spongy portions, but not cut down through the back. All of the American boot and shoe manufacturers, however, and most of our foreign customers, since they have become accustomed to the use of "side" leather, prefer it in that way, as they can use the inferior portions for in wer soles, heel lifts,
stiffenings, etc., and the thickest portions for outsoles, with greater latitude in their selections as to quality and kind of stock required for each.
Of the "handling," which is the first operation of the tanning proper, our artist has given a single ill ustration, show ing the mauner of proceeding, as also with the "laying away;" but both these operations are likewise represented in the larger view at the bottom of the page, the first process running in to the second, taking up nearly all the room of the principal building. The hides, as they come clean and white from the beamsman, are thrown first into a vat containing weak tan liquor, of just sufficient strength to col or the grain or bair side, and partially strike through the grain. It is the combination of the tannic acid of the bark with the gelatine of the bide which alone makes true leather. It is also necessary, if possible, to somewhat distend or "plump" the hide.
And here we come to one of the great questions in the tanning business, about which the doctors in the trade have long disagreed, namely, the proper methool of plumping and the feeding of the hide with tan liqu or in its early sta ges. The hide, as it comes from the sweat pit, where the incipient putrefactive fermentation bas been sufficient to loosen the hair, must bave prompt treatment with some counteracting agent, or it will "run," so asto lose gelatin, and thus lessen the weight of the leather, or damage the grain, or make f or in all the early stages. The handler liquors should be of sufficient strength to at once stop this tendency, and they suffient strength woll al once stop this tendency, and they
should should be such as will also open the pores of the hide. In
hemlock sole leather there are two general classes in the marhemlock sole leather there are two general classes in the mar-
ket, commonly known as "acid "and "non-acid," according to the plan followed at this stage of the process. The first takes its name from the fact that sulphuric acid, though di luted to about the strength of a weak vinegar, is used in the handlers to plump the stock and assist to stop decay, while the non-acid leather is so called because only the liquors derived from the bark are employed. In.the latter case, however, a tan liquor which is not only weak, but which has become sour or oxidized from exposure to the air, is found mostefficient, both to stop decay and plump the leather. The "acid" or vitrio plumped leather al ways has a thin grain and a dark streak under the grain, which is very objectionable to manufacturers, who buff off the surf ace of this grain to make a clear, fa ir, even-colored bottom; "acid " leather has, also, a tendency to be barsh and brittle, though this is not al ways the case, some of the most solid leather for heavy work being of this class. In the non acid leather, also, if the liquors used in the handlers be too old and sour, the grain will not be light-colored, though it will not have that distinctive dark streak. There is a nice mean to be sought here, which bas bæn successfully attained by our best practical tanners only. The "Branswick" tannery is a non-acid yard, and the firm who built and are operating it have made for themselves a wide reputation, wherever hemlock sole leat her is used, for
the excellence of their product in this line of manufacture the excellence of their product in this line of manufacture
Their leather bas been solid and of good substance, fine textured, excellent in grain and clear in color, just such as is required by the first-class boot and shoe manufacturers, making a handsome looking and good wearing bottom.
The process of bandling in the tannery occupies from two to four weeks according to the kind and condition of hide and the state of the liquors The strength of the
liquors is gradually increased as this department of the liquors is gradually increased as this department of the
work proceeds, so that, while the first bandlers have a work proceeds, so that, while the first handlers have a
strength or weight of sour tan liquor of four to six degrees, the last ones will bave a sweet tan liquor weighing from twelve to sixteen degrees. The weight or streng th of liquors is usually tested by what tanners call a " barkometer," but which is really nothing more nor less than a hydrometer, so $\%$ ranged as to be best adapted for tanners' use, with a scale
tion, about thirty-five to forty degrees, although, of course with any artificial abstraction of their moisture, or the further add ing of extraneous matters which would be held In the bark extract manufacture, which is'now a consider able industry in this country, tan liquors are evaporated able industry in this coun try, tan liquors are evaporated
down to about two hund red degrees, according to a similarly down to about two

Next we come to the lay-aways, where, the gra in having been thoroughly colored and "struck through" with the tan liquors, the sides are "laid away." One of the views shows the manner in which this is done, a workman standing by and throwing one or two shovelfuls of ground bark on each side as it is laid down, and, after the pile reaches the top of the vat, enough tan liquor is run in to cover the whole.` Each lot of hides, in going through, receives five lay-aways, except in case of very heavy ones, which may receive the sixth, the time occupied in the first ones being from five to ten days, and in the last ones from three to six weeks. W ith each change, however, the sides are given a stronger liquor than was the preceding one, until, in the last lay-away, the strength of liquor reaches from thirty-two to thirty six degrees, or as
much as any leaching process will get out of the bark much as any leaching process will get out of the bark. The time usually occupied in the tanning is about six moaths, longer is frequently consumed, especially with heavy hides, it being considered quite advantageous to let the leather lie as long as possible in the heavy liquors of the last lay-aways. The preparation of the bark liquors properly commences with the grinding shown in one of the views. The bark is peeled in the woods in the spring, and is piled and allowed to season for a few months, or until the following wintor,
most of the tanners having their bark hauled in the winter, most of the tanners having their bark bauled in the winter,
when the snow is on the ground. All of the bark coming from any considerable distance will be brought in by rail and all is unioaded from the cars or vehicles bringing it directly opposite the bark mills, except the quantity they will keep ahead in stock, their usual policy being for the present, while the supply is so abundant, to have it brought in only a bout as needed, and thus save the extra hand-
ling. The mills at the top have something the appearance of ir on hoppers, about twenty-four inches in diame ter, over the edges of which the attendant roughly breaks and feeds in the bark. There are many different styles of bark mills, but the great point necessary in a good mill is that it grind evenly, and of sufficient fineness, without also making dust, while it will at the same time work with sufficient speed, without being unduly liable to break or get out of repair. The mills bere grind very evenly, re ducing the bark to about the average size of gra ins of wheat,
and in their fitting up no pains have been spared to provide ample power and use every precaution against possible break-downs. The geaving running these mills is below the floor, and is shown in a special view on this page. Perbaps
the most noticeable feature of this department, however, is the entire absence of bark dust, with which the air is gene rally filled and all surrounding objects covered everywhere the neighborbood of the bark grinding in most tanneries.
The explanation is found in the fact that the bark, as it leaves the teeth of the grinders, is received into a thin, slowmoving stream of water, and is in this way conveyed to the leaches.
The leach house is a large building, shown in one of our views, the leaches themselves being not unlike the vats or hand lers in which the leather is tanned. Into these leaches, by a system of covered troughs which enables the current
from the bark mills to be floated into every part of the leach from the bark mills to be floated into every part of the leach a regular system, which can be changed to meet each day's requirements. They are then warmed up by steam pipes runn ing into them, but not heated sufficiently to extract the
resinous and coloring matters of the bark, which would be resin ous and coloring matters of the bark, which would be
the case if the temperature was raised to the boiling point. There is a great difference of opinion among tanners as to what degree of heat should be used in this process, but
the best test of the excellence of any met hod is to be found in the quality and color of the leather. After the liquor has thus stood a sufficient time to mainly ex baust the strength of the bark, it is drawn off and another liquor put on, with a similar process, the bark being thus "washed," as it were, three or four times, until its strengt is exhausted, and the
liquors are pumped into the large coolers adjacent to the yard. It is necessary, however, in order to make the strong liquors required in the later stages, to put the same solution several times through different leaches, each one raising
the strength, until the practical limit is attained in a weight the strength, until the practical limit is attained in a weight
of about thirty five degrees At the thirty five degrees.
At the sides of the leaches, with low supports in the passage way, run long, slow moving endless chains, with slats at fre quent intervals, on which is pitched the wetspent tan from the leaches, after it bas been thoroughly exhausted of its tann in. These belts carry the spent tan to the furnace room and auto matically dump it over the feed holes of the great wet tan ovens, in such way that only mere nominal attention is re
quired at any time to see that the fires are well kept durin quired at any time to see that the fires are well kept, during all the working hours of the day at least, from one month's end to another. These ovens are built according to what is designation for them which rase as the "Ho Justed, ford, in the famous Thompson wet tan suit, about ten years aro. The decision of the court in this case was widely com-
mented upon as maintaining the validity of a patent which, to some extent at least, set up the advantages of water itself in fuel, and claimed that it was actually and advantageously dissociated in a certain described system of ovens, operated in a specified way. The "Hoyt" ovens, bowever, which were not considered as coming under this patent, are simply structures with high grate bars and good smokestacks, to insure strong draught, with ample grate surface and a high arch, to insure plenty of room for a large body of fire, beside an unusual proportion of wet and charred fuel constantly coming into condition for actual combustion. They are se in front of the boilers, and, for, convenience, are automati cally fed from the top as described. The fire once thoroughly started and the walls heated, there is no difficulty with these ovens in getting plenty of steam at any sole-leather tannery provided the ovens have been properly built and made large enough. They require more fuel than they would if the tan were dry, but spent tan is a drug at all the great sole leather tanneries, and some of the tanners have put in much large ovens than they need, as the readiest means of getting rid of their spent tan. In one instance, at least, within the writer' knowledge, compla int was made of a tannery at a certain
town in Maryland for blowing off steam so much of the time, which was caused in this way.
From the nature of the case, therefore, there is no reason why a sole-leat her tannery should be wanting in any facili ties which an abundant supply of power and steam for heat ing will supply, and the new "Brunswick" tannery is exceptionally well fitted up in this particular. It has ten boilers, thirty eight inches in diameter by thirty-six feet long each, to make steam for heating the buildings, heating and pumping liquors and water, and running a balf dozen dif ferent engines in the various parts of the tannery, for there is no part of work in which power can be advantageously used where it is not supplied in abundance
After the leather bas come from the final lay-aways, and been allowed to drain as piled up for a little time, it is taken to the scrubbing department. Here are large drums, with doors in their ends, for putting in and taking out the leather these drums being formed of open work of heavy slats, and sunk in vats where a stream of water is kept constantly run ning. The leatheris revolved in these drums until the bloom, stains, gum, and sediment which may have accumulated on it during its stay in the vats are was hed a way, after which it is piled up on one side to drain. A rough coating of cod oi is then brushed over each side, and the leather is moved on to the drying loft, a building nine bundred and fifty feet long, with ample ventilators at the top. Four tiers of sides are hung here, one above the other, the steam pipes with which the room is abundantly supplied insuring a constant circulation of warm dry air. An ill ustration on this page gives a sectional view of this department.
The only operation now required before the sole leather will be ready for market is the rolling, conducted in a build ing which constitutes a for ward extension of the dry inglofts. Before rolling the leather is again slightly dampened and oiled, the object being to bring it into what tanners call a properly "sammied" condition, or very similar to the "temper" which shoemakers give it before hammering to shape it over the bottom of the last. Especial care is neces sary not to bave the leather rolled too hard, which would hurt its quality in the eyes of many manufacturers. The beds of the rollers are brass.faced, narrow, and about twenty inches long, concave, in which swings a roller on an arm, with a sort of pendulum motion, a treadle allowing the workman to put on any desired pressure, and the ta ble affording ample room for moving the side about in bringing its different parts under the roller. In this way the two sur faces are made firm and smooth, and a high polish given to ge grain side
The working facilities at this tannery exceed probably those of any ot her tannery in this country, and it is certainly now working in a greater number and weight of hides than was ever before done in one establishment. It was intended to tan 500 bides, or 1,000 sides of leather, per day-all standard, full weight sole leather, and this number has actually been worked in now continuously for several weeks. America could years ago boast of the largest sole leather tannery in the world, but there were several establishments here which, though larger than those of any ot her country, were so nearly equal in capacity that it seemed almost invidious to place one above the ot her in such a comparison. The "Brunswick" has now settled this question with a a production which excites wonder among our own tanners, and will, no doubt, provoke many expressions of incredulity abroad.
Of the firm who illustrate their business enterprise in an undertaking of this magnitude, words would be superfluous among New York merchants, or almost anywhere in the The Boston.

Growth of Chemical Man ufactures in the United States.
In a recent commanication the Secretary of the Manufac turing Chem ists' Association of the United States gives inci dentally some figures which strikingly exhibit the impor tance of chemical manu fa ctures in this country. The capita invested is $\$ 85,000,000$; the annual production is worth $18,000,000$; the number of manufacturing establ ishment orking using 600,000 tons of coal, and emplying w orking people, whose wages amount to $\$ 12,000,000$

The Use of Plaster of Paris in Fractures. ing is the time for work, when the whole body is rested, the Plaster, either in the form of a bandage en veloping the brain relieved from its tension, and mind power at its best.-

 fractured part, or in the form of a distinct splint, is used Lancet. quite extensively in the various hospitals of this city. In fact, ail other things being equal, it is given the preference over other forms of apparatus usually employed in such injuries. Particularly is this the case with fractures of the leg, which are treated now almost exclusively by this bandage. The fracture box is rarely used, and only in exceptional cases, where there is great swelling, and under conditions of extensive injury of the skin, in which it is necessary for the parts to be exposed during treatment. Generally this open method is only employed until such time as it is safe to apply the plaster of Paris bandage, as shown by the disappearance of the swelling and the healing of the abrasions. No time is lost in so doing, as generally the parts are made fit for the immovable apparatus before the bony union commences. In compound fracture the limb is generally placed at once in the plaster apparatus, openings being made in the latter corresponding with the injuries of the soft parts, for the purpose of establishing thorough drainage. As a rule, and when, of course, there is no special contraindication in the shape of undue swelling, etc., all fractures in which plaster of Paris is to be employed are "put up" at once. A general description of the method of procedure may apply to that to be employed in any case of fracture in any region of the body. The part is enveloped in a thin layer of cotton, and the bandages, immersed in water sufficiently long to be permeated, are applied directly over the cotton, care being taken to exert slight and uniform pressure. Each layer of bandage is carefully moulded to the inequalities of the surface, and made perfectly smooth before the next layer is applied. If the bandages are properly prepared, without sizing, and have been kept in a dryplace, the plaster will commence to "set" before the second bandage is applied. Generally three layers of bandage are sufficient for a fracture where ordinary support is required. Four, with suitable re-enforcements, may be required in other cascs. After the dressing is complete, it' is exposed to the air, and hardens sufficiently in two or three hours to allow the limb to be moved.The plaster apparatus is generally kept in position during the whole period of treatment. If undue swelling occurs, the envelope is slit in the long axis of the limb by a Hays saw, or by scissors for the purpose, and thus a splint is formed which is kept in position by outside hendages.
Some surgeons prefer to dispense with cotton altogether, and use a well-fitted silk or gauze stocking or jacket as tire foundation for the plaster. There is, however, greater care and skill required in this method, as any undue pressure at any one point would be more apt to produce swelling in the parts beyond. Yet still, when properly applied, this makes the most comfortable and lightest dressing that can be used, and gives the perfection of support and greatest accuracy of adjustment to the in jured parts.-Med. Record.

Morning Work

Perhaps, on the whole, moderately early risiug is now a commoner practice in cities than it was forty years ago. It seems strange that the habit of lying in bed hours after the sun is up should ever have obtained a hold on the multitude of brain-workers, as undoubtedly it had in times past. Hour for hour, the intellectual work done in the early morning, when the atmosphere is as yet unpoisoced by the breath of m yriads of actively moving creatures, must be, and, as a matter of experience, is incomparably better than that done at night. The habit of writing and reading late in the day and far into the n ight, "for the sake of quiet," is one of the most mischievous to which a man of mind can addict him. self. When the body is jaded the spirit may seem to be at rest, and not so easily distracted by the surroundings which we think less obtrusive than in the day; but this seeming is a snare. When the body is weary, the brain, which is an integral part of the body, and the mind, which is simply brain function, are weary too. If we persist in working one part of the system because some other part is too tired to trouble us, that cannot be wise management of self. The feeling of tranquillity which comes over the busy and active man about $10: 30$ or 11 o'clock ought not to be regarded as an incentive to work. It is, in fact, the effect of a lowering of vitality consequent on the exhaustion of the physical sense. Nature wants and calls for physiol ogical rest. Instead of complying with her reasonable demand, the night-w orker hails the "feeling" of mental quiescence, mistakes it for clearness and acuteness, and whips the jaded organism with the will until it goes on working. What is the result? Immediately, the accomplishment of a task fairly well, but not half so well as if it had been performed with the vigor of a ref reshed brain working in health from proper sleep. Remotely, or later on, comes the penalty to be paid for unnatural exertion-that is, energy wrung from exhausted or weary nerve centers under pressure. This penalty takes the form of "nervousness," perhaps sleeplessness, alm ost certainly some loss or depreciation of function in one or more of the great organs concerned in nutrition. To relieve these mala-dies-springing from this unsuspected cause-the brainworker very likely has recourse to the use of stimulants, possibly alcoholic, or it may be simply tea or coffee. The sequel need n ot be followed. Night work during st udent life and in after years is the fruitful cause of much unexplained, hough by no means inexplicable suffering, for which it is difficult, if not impossible, to find a remedy. Surely morn

The Space Occupied by Coal

Few persons have an idea as to the amount of coal that can be stowed in a given space. Manufacturers think they have not enough room, even though they may be offered bargain. We, therefore, give an example of the manner in which it may be figured up. A shed or room, 15 feet high 18 feet wide, and 30 feet long, will hold 200 tons of anthra cite coal, and perhaps 10 tons less of Cumberland. Thus, $15 \times 18 \times 30=8,100 \times 40=2021$

The average number of cubic feet required to stow a ton coal is as follows:

Bituminous.

Cumberland, maximum. 42.3	
Duffruyn, Welsh.	. $42 \cdot 99$
Cannel, Lancashire	$46 \cdot 37$
Blossburg, Pa.... 42.1Hartley, Newcastle. 44	
Pictou, Nova Scotia	
Pittsburg, Pa.	7.08
Sydney, Cape Breton	02
Clover Hill, Va	49.02
Cannelton, Indiana.	
Scotch.	
Richmond, Va. (Midlothian)	41.04
anthractite.	
Peach Mountain.	41.06
Forest Improvement	41.07
Beaver Meadow, No. 5.	3908
Lackawanna	45
Lehigh Co.'s	40 (5
Beaver Meadow, No. 3	4007

Pittsburg.
80.09

It is usually stated that a ton of coal " in the hill" meas es about a cubic yard, or 27 cubic feet.
A prominent retail dealer in Philadelphia informs us that from many years' experience he finds the cubic contents of 2,240 pounds of hard Lehigh coal to be a little over 36 feet an average Schuylkill W. A., 37 to 38 feet; Shamokin, 38 to 39 feet; Miller, Greaff \& Co., Lorberry, nearly 41.
According to measurements made with Wilkesbarre anthracite coal from the W yoming Valley, it requires 32.2 cubic feet of lump, 33.9 cubic feet of broken, 34.5 cubic feet of egg, $34 \cdot 8$ cubic feet of stove, $35 \cdot 7$ cubic feet of chestnut, and 36.7 cubic feet of pea, to make one ton of coal of 2,240 pounds; while it requires 28.8 cubic feet of lump, $30 \cdot 3$ cubic feet of broken, $30 \cdot 8$ cubic feet of egg, $31 \cdot 1$ cubic feet of stove, 31.9 cubic feet of chestnut, and 328 cubic feet of pea, to make one ton of 2,000 pounds.

silvering of Large Telescopic Mirrors.

At a recent meeting of the Royal Astronomical Society Mr. Common read a paper on "Silvering Large Mirrors." He said that the chief difficulty in silvering large mirrors was due to their weight, and the ditticulty of handling them and turning them face downwards into the silvering solu tion. His own mirror was 37 inches in diameter and $41 / 2$ inches thick, and weighed over 400 pöunds. It was diffi. cult to handle such a heavy mass of glass, and turn it over without doing some damage with the tackling and pulleys that were necessary to move it. The plan which he had adopted was to make use of a latge sucker to hold the mir ror. The atmospheric pressure was partly removed, and the sucker could then be attached to pulleys, and carried the mirror along with it. The sucker consisted of a shallow cylindrical iron box, which rested upon an India-rubber ring at the back of the mirror. The atmospheric pressure was removed by means of an air pump, and a mercury gauge attached to the box showed the amount of exhaus tion. He found that a difference of four inches of mercury between the atmospheric pressure and the pressure within the box was amply sufficient to lift the weight of the mirror. For silvering solution he made use of glucose and water and nitrate of silver, and got a very good film in about forty minutes, so that if the flat became dewed while he was obser ving, he had no hesitation in removing the film, and could resilver it and have it back in its place within the hour.

When the mirror was first silvered, in the autumn of 1879, he devoted it principally to observations of the satellites of Mars. They were not good test objects to give an idea of what a mirror would do, but he thought hie had a better film with that process than he had before. He observed Saturn last year, and during 1879, and got a few observations of Mimas when near to the end of the ring. And on the first of Deceniber he turned the instrument on Mars, and saw Deimos pretty plainly.

A Notable Bridge.

An irou bridge now building across Murderer's Creek, near Newburg, N. Y., for the New York, Ontario, and Western Railroad, will be one of the notable bridges of the country. It will be 1,206 feet long, and 150 feet high, or 680 feet longer than the Niagara Suspension Bridge, and 232 feet longer than the new London Bridge over the Thames. Its height exceeds that of the New York and Brooklyn River, by about 25 feet.

Fatal Electric Light Accident

A fatal accident recently occurred at Hatfield House, the residence of the Marquis of Salisbury, to a laborer named William Dimmock, 22 years of age, in consequence of coming in contact with the wires conveying the electric current for lighting the mansion. Hatfield House is lighted with 117 lights on the Brush system, worked by an engine of 16 -horse power, placed in the sawmills some distance from the house; two electric wires and a telephone wire connect the sawmills with the house; for some distance they are car ried on poles, but to save the unsightly appearance of the poles near the house, the wires are run along the garden wall, three feet from the ground, and for some distance are not protected. The deceased was at work in the garden, assisting to lay a telephone wire, ard was sent to ease the wire at the corner of the brickwork to prevent it getting cut. While he was absent the linesman heard the wires shake, and on locking round saw the deceased lying on his back, and on going up to him found he was dead. The machine wa at work at the time, some of the Brush Company's men being down from London repairing it, and it is supposed that the deceased slipped, caught hold of the electric wires to save himself, and was immediately killed by the shock. The medical evidence showed that death arose from shock to the system, causing paralysis of the heart. At the inquest the jury returned a verdict that the deceased died through touch ing the electric wire, and appended a recommendation that there should be a stated time for working the current, and that notice should be given of it to all persons working near the wires.

It was stated that, to avoid similar accidents in fut ure, the wires would all be conveyed either under ground or on poles out of reach.

Explosion of Aqua Ammonix.

The Pharmaceutical Journal records a recent case of an explosion of ordinary liquor ammoniæ followed by serious results. A Belfast \dot{w} oman, subject to headache, sent her daughter to the druggist to purchase a small quantity of "head salts," for which he gave her liquor ammoniæ, or "spirit of hartshorn," instead of the salt, carbonate of ammonia. The vial was put on a shelf and not used for a few days. Having a headache, the woman lifted the remedy to apply it, and had it in her hand for a few minutes only when the vial suddenly exploded, scattering the contents over her face. Her eye was destroyed, and her mouth and throat burned, the skin of both having been torn off. The vial had been put on the mantelpiece previous to the time it was itting and when ab

Malarial Organisms in the Blood.

In the blood of patients su ffering from malarial poiscning M. A. Laveran has found parasitic organisms, very definite in form and most remarkable in character. Some were cylindrical curved bodies, pointed at the extremities, with a delicate outline and a transparent body, colorless except for a blackish spot in the middle, due to pigment granules; on the concave side a fine line could often be traced, which seemed to unite the extremities of the crescent. These bodies presented no movement. Spherical organisms were also seen, transparent, of about the diameter of a red blood corpuscle, containing pigment grains which, in a state of rest, were often arranged in a definite circle, but sometimes presented rapid movements, and then lost their regular arrangement. On the borders of the spherules very fine fila ments could often be perceived in rapid movement. These filaments were in length three or four times the diameter of a red corpuscle. Their number varied. Sometimes three or four were seen around a spherule, to which they commu nicated an oscillatory movement, displacing the adjacent red corpuscles. The free extremities of the filaments were slightly reflexed. When at rest the filaments were invisible on account of their tenuity and perfect transparence. Thes mobile filaments appeared finally by becoming detached from the pigmented spherules, continuing, however, to move freely amidst the corpuscles. There were also bodies of spherical or irregular form, transparent or finely granular, about the hundredth of a micro-millimeter in diameter, containing dark red, rounded pigment grains, either regularly arranged at the periphery, or aggregated at some part of the spherule. The bodies and granules were both motionless. These appear to be the ultimate or "cadaveric" stage of those last described. They have no nuclei, and do not tint with carmine, a distinction from the pigmented leuco cytes with which they have bitherto been confounded Lastly, spherical elements were met with similar to those already described, but much smaller in size, and apparently representing a stage in their development. The animated nature of the mobile pigmented spherule, furnished with filaments, appears indisputable. M. Laveran regards it as a form of animalcule, which exists at first in an encysted state, and in the perfect condition becomes free in the form of mobile filaments, a mode of development n ot uncommon among the lower organisms. Besides these organisms, the blood of patients suffering from malarial fever contain (1) red corpuscles. which appear to be vacuolated at one ortwo spots, and contain pigment granules; (2) pigmented leuco cytes; (3) free pigment granules, possibly proceeding from the destruction of the parasitical organism
These elements were first discovered by M. Laveran a
year ago, and since then he has examined the blood in 192 patients affected with various symptoms of malarial poisoning, intermittent and continued fever, and palustral cachexia, and found the organisms in 180 . The disease had been contracted for the most part in different regions of Algeria and Tunis. He convinced himself, by numerous and repeated observations, that these organisms are not to be found in the blood of persons suffering from diseases that are not of malarial origin. In most of the cases of malaria in which the examination yielded a negative result the patient had undergone a course of treatment with quinine, and to this fact the absence of the organisms from the blood was probably due. The addition of a minute quantity of a dilute solution of sulphate of quinine to a drop of blood was found at once to destroy the organisms. In all the examinations great care was taken to preclude the entrance of any extra neous objects into the drop of blood examined. In general the parasitic bodies were found in the blood only at certain
times: a little before, and at the moment of, the accession times: a little before, and at the moment of, the accession
of the fever. In some very obstinate cases the organisms were always present in the blood. They rapidly disappeared under the influence of a quinine treatment. It is conjectured that in the apyrexial intervals the organisms probably sojourn in internal organs, especially the spleen and the liver. After death from malarial disease pigment granules are found in great numbers in the blood, and especially in the small vessels of the spleen and liver; and they may be, in the most severe cases, so abundant that not only the spleen and liver, but the marrow of bone, and even the gray substance of the brain, are darkened by their presence These pigment granules, which may obstruct the capillary vessels, appear to be derived from the parasitic elements, which perish after death, and become then unrecognizable -Lancet.

IMPROVED CIRCULAR SAWMILL.

The circular sawmill shown in the annexed engraving is made at the works of Alexander, Bradley \& Dunning, Syracuse, N. Y. The frame is iron, and cast in one piece. The saw mandrel is made of steel, and runs in self-oiling boxes, which are cast in a solid yoke extending across the frame, and is adjusted by means of set screws to line the saw. The main pulley is placed outside of the frame, in order to relieve the bearing next to the saw from the strain of the main belt, and give more room between the saw and belt, greatly increasing convenience and safety in handling the fumber. This mill has an improved friction feed, which may be varied at any point to feed slowly while passing through a knot by pressing with less force upon the feed lever, or the carriage may be instan tly stopped by throwing the feed lever over. The sawyer sets the log and operates the carriage, thus saving one man over the old style of mill. These machines are furnished with Carley's improved head blocks with screw or lever set as preferred. The screw set has a patent chain connection and taper attachment, as shown in the engraving, by means of which the screws are operated independently or simultaneously, with perfect exactness, enabling the sawyer to set to any required thickness, with great accuracy, and to advance one or both ends of the log at pleasure, without removing from his place.
When only two head blocks are employed an idle chain wheel and stand is attached to the tail end of the carriage, as shown in the engraving. This enables the sawyer to adjust the second block adjust the second block
for long or short logs for long or short log without detaching the
chain; when three blocks chain; when three blocks
are used the third block takes the place of the idle wheel.

An improved simultaneous ratchet set head blocks, with rod connection, can be supplied if desired. They are very simple in construction, and much approved by those who prefer the lever set. The connecting rod is made large to avoid torsion, and is 12 feet long for 18 feet of carriage; 16 feet long for 24 feet of carriage, and 20 feet long for 30 feet of carriage.
Three sizes of this mill are made, namely, Nos. 1 2 , and 3. The No. 1 mill is strong and well made and runs very light. It is designed for use principally as a portable, in connection with the farm engine for neighborhood use. It is also used in connection with water wheels in localities where water power is limited, and where there is not enough sawing to do to justify the use of a large and more expensive mill. No. 2 is a strong, durable mill, designed to meet the wants of a large class for a good, cheap mill, of larger capacity than No. 1, and is used as a portable or stationary mill. No 3 (shown in the engraving) is used principally as a stationary mill. It has extra heavy iron frame, 3 inch steel saw mandrel with standard collar, and carries a 60 inch or smaller saw. The main pulley is 26 inches in diameter and 14 inch face, and the head blocks open 36 inches; capacity from $\mathbf{1 0 , 0 0 0}$ to $\mathbf{1 5 , 0 0 0}$ feet per day.

NEW AUTOMATIC PENCIL.

The engraving represents a pencil of entirely new con struction and of convenient size for the vest pocket. It is handsome in design, well made, strong, and durable. It carries a lead three and three quarter inches long and three thirty-seconds of an inch in diameter. Leads of this size black, indelible, or copying, are sold by all stationers, so hat the pencil may be readily fitted with leads. The exterior f the instrument is of finely nickel-plated metal and hard ubber, plain or ornamented in various artistic designs. No spiral or other variable spring is used. Unlike other automatic pencils, it has a firm and immovable grasp on the lead that does not cut or mar the lead in the least, and maintain the gripe as long as desired.

When needed for use the lead is advanced by the pressure of the forefinger on the top section; and, when no longer needed, is retired, for protection, by a perpendicular pressure of the pencil on the paper or desk, or by a back-pull of the op section.
When the lead, from wear, requires resetting for a longer point, a quarter turn to the left of the top section releases the gripe,the movable partsare drawn backby the top section, the pencil is then placed, point downward, on the finger or desk, and, while the movable parts are held back, the top section is turned to the right till the gripe is renewed. This automatic operation, requiring but an instant, sets the lead the proper length for use without the aid of the eye.
This instrument is manufactured by the Stylographic Pen Company, and was patented September 13, 1881. It is als covered by Letters Patent in foreign countries, and may be purchased for fifty cents at any of the following offices of the company: 173 Broadway, New York; 290 W ashington street, Boston; 38 Madison street, Chicago.

The Marlboro Sea Serpent

There was lately discovered in a marl pit in Monmouth County, New Jersey, a notable addition to the known fauna
tile, however, was of a more chunky build, with shorter head and neck and stronger jaws. Both belonged to the order of pythonomorphs or snake like saurians, which were the genuinc sea serpents of the period.

MECHANICAL INVENTIONS.

Mr. Jacob Burkhart, of Lock Haven, Pa., has patented an improved saw set. This is an improved implement by which the teeth of fine as well as coarse saws may be accuately set, and one which is adapted also to hold and set the eeth of narrow scroll saws. The invention consists prin cipally of an adjustable and slotted rest or support for the saw, of a horizontally adjustable stop or guide in combination with a spring-supported hammer.
Ordinarily pitman bars or rods are connected with the shaft by means of a crank at the end of the shaft, or to cranks formed by bending the shaft. By this arrangement the whole body of the pitman bar is carried with the crank, causing a considerable loss of power and an undesirable jarring or slaking effect, due to the centrifugal force of the pitman bar, and when running at high rates of speed, the centrifugal force of the pitman becomes inju the centrifugal force of the pitman becomes inju
rious, causing the whole shaft to vibrate. Mr. George P. rious, causing the whole shaft to vibrate. Mr. George P.
Conant, of Geneva Lake, Wis., has patented a pitman bar intended to overcome this difficully, and also to pro vide a pitman connection which may be attached to a straight shaft at any point in its length. The invention con sists of a pitman head formed with cross slots, in combination with a crank adapted to be secured upon the shaft, the crank pin of which is adapted to move in one of the slots of the pitman head, the other slot thereof being to accommodate the backward-and-forward movement of the pitman and pitman head in a rigbt line upon the shaft, the crank pin being provided with a sliding block, so that the pin will pass the slot for the shaft.
An improved boot-brushing machine has been patented by Mr. Alfred S. Clark, of Chatawa, Miss. The invention con sists of a series of brushes attached horizontally and verti cally to a frame loosely mounted on a vertical rod and com bined with suitable devices for revolving it. The vertical rod is fastened in a base provided with foot-rests, upon which the feet may be placed if the boots or shoes are to be brushed.
An improvement in knitting machines has been patented by Mr. Freeman A. Calley, of New York city. The object of this invention is to facilitate the adjustment of the length of the stitch; to facilitate running a series of needles out of operation, and, finally, to prevent breaking the vertical ribs of the stationary needle-carrying cylinder. These ends are attained by an ingenious combination of mechanism which cannot be clearly described without engravings.
Mr. Henry G. Dennis, of New Bedford, Mass., has patented un improved bell joint for coupling pipes which consists in a beveled or bell-shaped collar provided in the inner surface with a groove or rabbet a short distance from each mouth of the collar. The latter is mounted on the enlarged or swaged end of a pipe, which receives the con tracted end of another pipe. The rabbets of the collar are then filled with molten lead or other suitable filling and thor oughly driven.
An improved spring, particularly adapted for side bar buggies, has been patented by Mr. James H. Howe, of Conneaut, 0 . These springs are long, yet they occupy smal compass in the buggy thus making the buggy very easy riding, and a
buggy provided with these buggy provided with these
springs will carry one or springs will carry one or more persons with equa ease and comfort.
Mr. Parsons Shaw, of Manchester, County of Lancaster, England, has patented an improvement in dental engines. The main object of the invention is to improve the universal joint employed in dental engines by a hinge movement which will allow the swinging arm to play freely in any direction without straining the apiral transmitter or causing it to bind or buckle. This is accomplished by asing bifurcations on the bearings and bending

carley's improved circular sawmill.

times. According to Professor Lockwood, the monster was between seventy and eighty feet in length, about one-third of his longitude being a broad, flattish tail constructed of hevron-shaped bones so as to make it a valuable engine of propulsion when used as a scull. The data furnished by the relics would imply that between the tip of his muzzle nd the back of his head was a distance of four or five feet. It is possible that the specimen belongs to some undescribed his. It is perhaps the remains are too imperfect to decide lidastes, which bave species of which have been determined, and was an own cousin to the mosasaurus, or the great lizard of the River Meuse, described by Cuvier. The European rep-
their ends at right angles

o the bearings, then connecting these ends by pivots.

In the manufacture of cotton goods the marks called "cut marks," which indicate " pieces" or "cuts" of forty, fifty, sixty, or more yards, are put upon the warp in the process of dressing or sizing the same, usually by means of a roller which has interchangeable large and small gear wheels) placed in the slasher near the measuring wheel, which roller carries a block from a trough or box containing coloring material slowly upward to a point where, at the proper time, t rolls against the warp, leaving the cut-mark, and from nence falls back into the color box. Mr. Orrin M. Rolfe, Lowell, Mass., has patented a cut-marker for slasher which will deliver the mark suddenly, as by a blow, and then cause the brush to move down into the color box with.

