NEW LIFE BOAT PLUG.

From time to time we hear of disasters at sea where the chances for saving life have been greatly lessened by the loss or misplacement of the boat stopper or plug, thus rendering the life boat useless. So important a consideration has this liability to loss of life become, that various contrivances have been invented and adopted, but all seem to have weak points and are more or less liable to get out of order. This device, which is styled by the inventor tbe "Emergency Life Boat Plug," is the invention of George A. Leavitt, Jr., of Newburg, N. Y., a patent having been recently allow for it. It is exceedingly simple, very easily worked. and seems entirely trustworthy.
Fig. 1 represents the life boat plug; Fig. 2 is a sectional drawing of plug, showing the details of its construction; Fig. 3 showing its position in boat. On launching boat the cap is screwed down tight on leather washer, thus closing slots and preventing the leather washer, thus closing slots and preventing the
inflow of water. On raising boat to davits, the cap is inflow of water. On raising boat to davits, the cap is
unscrewed as far as possible, thus opening slots for the unscrewed as far as possible, thus opening slots for the
outlow of water. The cap cannot come off, its movement being arrested by the flange in tube coming in contact with shoulder in cap, so there is no danger of loss or misplacement. The plug is made of brass, and is stout enough to withstand any knock or hard treatment that it is liable to receive. The slots are made larger than the actual capacity of tube allowance, being made for partial stoppage by floating matter.

Largest fan in the World.

The ventilating fan at the St. Hilda Colliery, South Shields, is the largest machine of the kind in the world, the diameter of the wheel being fifty feet. The fan can be driven at a speed of fifty revolutions per minute, at which velocity the outer extremities of the blades travel at the rate of a mile and a balf a minute-a speed which is estimated to produce a movement of air equal to 200,000 cubic feet per minute. Mucb of the air moved by this fan must be drawn through over fourteen miles of narrow underground passages.

It is driven by a pair of high pressure engines, each cylinder of which is three feet six inches in diameter, with a three foot six inch stroke. Two completely equipped and perfectly distinct engines are provided for the working of the fan, so that, in the case of a break dowe on the part of one of them, the other can at once be brought into action.

NEW ACOUSTIC TELEPHONE.

We give an engraving of an improved acoustic telephone and telephone call signal, patented by Mr. John B. Bennett, of San Luis Obispo, Cal. This instrument may be placed in any desired position, and the line wire may extend in any required direction without making an angle at the instrument, and whichever way the instrument is turned the appearance will be the same. The great difficulty with other string telephones is that tbey are often incapable of being placed in the most convenient position. The curved speaking tube-which is also used for hearing-terminates flush with the front side of the case, and so constructed that any sound-wave entering its mouth is focused directly on the center of the diaphragm.

The instruments are furnished with a good and disnished with a good and disis operated by turning a crank on the instrument, the operation being the same as that of operating a magneto bell. Turning the crank causes a hammer to strike rapidly and strongly against an eye in the diaphragm to which tbe line wire is attached, affording a loud and distinct alarm free from all the bother and expense of electricity. If wished for special purposes, a magneto call can be arranged within the case at slight expense in the place of the automatic call, and can be operated by the same crank.
These instruments are nicely finished, the mouth-piece, crank, and other parts being nickel plated. This telephone, for short distances less than a mile to a mile and a half, works clearly and satisfactorily. The inventor states that he has heard distinctly through a full mile and a half of line.
A new suspender has been devised by the same inventor by which the line is supported without interfering with its sound-conducting qualities. It is also capable of turning angles in the line without material loss of sound.
This telephone has the advantage of great simplicity, and transmits speech naturally and loudly without the application of electricity and without the troubles attendant on its use.

For further information address the inventor as above

BENNETT'S ACOUSTIC TELEPHONE.

the Atlantic cables was also obstructed. At midnight (Valentia time) messages to the United States were three and a half hours behind time, and messages from this counry six hours late. The wires between Chicago and St. Paul, Chicago and Milwaukee, and Chicago and Omaha
were worked on the strength of atmospheric electricity without batteries.

A Deers Head with Fifty-eight Points.

A head of the white tailed American deer, bearing fiftyeight points, was lately received in this city from San Antonio, Texas. This is three times as many as had been seen before in this part of the country. The deer was shot near the the spectrum marked by a black band.

The Sun's Furl.

The most brilliant auroral display since 1860 was that of Sunday night, April 16. The accompanying electric storm was uncommonly severe. The chief niybt operator in the Western Union Telegraph Company's building says that the wires began to be affected sbortly after ten o'clock, and in half an hour all the wires, North, Soutb, East, and West, were frequently interrupted. The greatest trouble was on the northern and western routes, but some of the wires on the other routes were also badly affected. The aurora $\left\lvert\, \begin{aligned} & \text { the other routes were also badly affected. The aurora } \\ & \text { would at one time rob the wires of the usual current, and at }\end{aligned}\right.$ would at one time rob the wires of the usual current, and at ${ }_{\text {subu }}$

leavitt's life boat plug.

ander it would so increase it as to render the opening of the wire necessary to keep the instruments from burning. This change was in some cases rapidly made, but in others a wire would be cbarged from ten to fifteen minutes at a time from the auroral current, which would then forsake it. From half-past eleven to twelve o'clock, while the electric torm was at its height, it was possible to work with Albany on a wire grounded at each end by means of the auroral current alone. A similar storm, but not as severe, was experienced about a year ago, during which a long pecial dispatch was sent from Albany on a wire without a battery. At one o'clock, on the Eastern and Southern routes, the wires were working better, but on those running West and North the interruption still continued. The interrup.
tion was the most continuous ever experienced. Business on

Wbat keeps the majestic ball hot and bright? This has greatly engaged physicists and astronomers, and various have been their theories. If the sun shone only by mere combustion of its own materials, the calculation is that its fire would not last five thousand years. It is very kind of Dr. Siemens to come forward with an entirely new theory, which holds out the hope that the men of science are all wrong with tbeir dismal foreboding, and tbat the creation is not sshemed on the poor footing of a German stove or a burban gas company. The learned ironmaster and physicist believes that the sun may very well go on illuminating and warming our world and the family of sister planets for an indefinite, if not infinite, time. He supposes interstellar space to be filled with an extremely attenuated hydrogen, and interplanetary space with denser gas, albeit more rarefied than the atmosphere drawn round each world. The sun, he tbinks, whirling on its axis, draws into its poles the thin bydrogen, hydrocarbon, and oxygen of our sphere, and these, being kindled, are projected outward at his equator into space. The accepted view is that the heat and light there developed and radiated perish, as far as we are concerned, except for the small portion arrsted by each solar satellite; but Dr. Siemens argues that this heat and light do their chief work in decomposing the carbonic oxide and watery vapor which were produced by the kindling at the solar poles, so that the sun itself perpetually renews its own supplies, and restores by its energy the waste matter which has fed that energy. The theory is much too technical and complicated to be here discussed, and we should offer a bad conpliment to its ingenious author even to attempt such a task. Dr. Siemens, however, has had great experience wilh the phenomena of radiated heat, and his applicalions of the new view to the nature of the zodiacal light and of comets is particularly striking. Of course it is startling to hear of something in our own system which closely resembles perpetual motion; and those who maintain that everything comes to an end, and that all mechanical energy must be gradually degraded and metamorphosed, will be slow to receive the new sug-gestion.-London Telegraph.

Sound, Light, and Heat.

Prof. Tyndall lately delivered the second lecture of his course at the Royal Institution. The explanations given by Huyghens of the phenomena of reflection and refraction, as well as of the properties of convergent and divergent lenses, had, he said, been fully verified by the progress of time and science. The lecturer slowed that tbere are sound lenses also, aud that tbe wave theory affords a no less adequate explanation of their properties. He demonstrated, by the test of the sensitive flame, that cotton net, because porous, transmits waves of sound, while the interposition of a non-porous body leaves the flame unaffected. Just as the passage of light was hindered by clouds, although the air and light of whicb these are made up were alike transparent, so acoustic clouds obstructed sound. Acoustic clouds consisted of layers of heated air with intermediate layers less heated. The lecturer formed an artificial cloud of the kind, which was shown to intercept sound; the sound was thus thrown back in miniature echoes. Another analogy between light and sound was brought out by comparing the solar spectrum with a scale of notes produced by striking a graduated series of tuning. forks. Too illustrate Dr. Wollaston's observation, that certain sounds are inaudible to many ears, Professor Tyndall blew a small whistle, whose low though shrill note instantly ayitated the sensitive flame, while full half of those present, as a scientist had predicted in conversat:on with the lecturer beforeband, heard nothing. Resemblances were also pointed out bet ween tbe absorption of light and that of sound. On the sound struck from one tuning.fork being quenched, it was proved to have been not annihilated, but simply absorbed by an adjacent fork. In like manner the yellow ray in the solar spectrum was absorbed by sodium vapor as the metal passed under the eyes of the audience into that form, leaving the place of that color in

Professor Tyndall concluded with an eloquent and generous tribute to the memory of bis predecessor in the chair of Natural Philosonhy at the Royal Institution at the beginning of our century, Dr. Thomas Young, who not onlypput into Champollion's hands the key to the Egyptian hieroglyphics, but anticipated by a score or years Fresnel and Arago, as was urged in detail, in placing upon its true scientific basic the undulatory theory of light. The lecturer repeated Young's brilliant demonstration of the fact that the prismatic colors of the soap-bubble are in the exact ratio of the
density of the film, ranging from the white light where the cuticle is thickest to the violet ray as it darkens to black just at the bursting point.

engineering inventions.

In d riving piling for railroads by a driver moved forward on the piles as the work proceeds it is essential that the piles be dressed and tenoned as rapidiy as possible, in order that there be no delay in moving and working the driver. Mr. Andrus L. Gilbert, of Albany, N. Y., has patented an invention, the object of which is to dress the piles by machinery carried on the car of the pile-driver and driven by the same engine, so that the work can be done as fast as the piles are driven, the caps then put on, and the track for the car laid rapidly and with less than the usual expense. The same inventor has also recently invented and patented an improvement on pile-drivers used in the construction of railroads; the invention consists in the arrangement of parts for driving inclined piles. The car will carry an engine for driving the winding-drum, and in operation the car is moved forward to project the platform in front, and then by transverse adjustment of the platiform the leaders are brought to place to drive the straight piles in succession. The leaders are then set at the required inclination, and the table turned first to one side and then to the other to drive the inclined piles in line with the straight piles. The work of driving is thus completed as the machine is advanced.
Mr. Christopher C. Bomberger, of Crocker Station, Mo., has patented an improved windmill, in which the wheel revolves in a horizontal plane, and is provided with wings which are kept in a vertical position during half of the revolution, and in a horizontal position during the other half of the revolution by an ingeniously arranged mechanism. The wheel exposes a grea
automatically.
Mr. Thomas Keith, of New York city, has patented an im provement in endless-chain elevators for elevating or lowering and delivering freight on docks and vessels. The object of the invention is to provide for transfer of freiglit from a vessel to a dock, or the reverse, by arrangements that are practically automatic in their actions. The invention consists in a jointed frame apparatus that can be set to both elevate and convey the freight, so that no handling is required and convey the freigbt, so
between the vessel and dock.

An improved car-coupling, patented by Mr. Jefferson E. Barrett, of Mount Vernon, Iowa, consists in a draw-head having a U shaped groove in its upper surface, combined with a flat bar sliding in a vertical longitudinal slot in the draw-bead, and provided with two lugs. The bar having levers pivoted thereto for raising and lowering it, the free ends of these levers pass through slots in plates provided with locking devices. When the vertically sliding bar is in the lowered position it holds the link in the groove in the draw-head, and it raises the link out of the groove in the draw-head when it is raised by means of the levers or the handle at its upper end.
Añ improvement in lubricators has been patented by Mr. Henry R. A. Boys, of Barrie, Ontario, Canada. This improvement relätes generally to the class of lubricators for engine cylinders operated by condensing steam, a drop of water displacing a similar quantity of oil, which enters the steam-pipe and passes thence to the cylinder. The great advantage secured by the use of this form of lubricator is that the lubrication is carried on continuously, effecting a more perfect lubrication than can be secured in the ordinary lubricator, besides saving a large percentage of the oil.
An improvement in rotary steam engines has been patented by Messrs. George W. Wade and Joshua M. Wardell, of Cadillac, Mich. The object of this invention is to construct a cheap and durable engine and to economize steam in the application of power. The casing of the engine is ellipsoidal, and the rotating piston, which is set centrally in the casing, is provided with radial wings capable of sliding in and out of the piston, to follow the inner surface of the cylinder.
Mr. Leonard Anderson, of Painesville, O., has patented an improvement in locomotive valve-gear, which consists of a vertically fixed lever, pivoted on the main pin, knuckle-pin, or other point on the parallel rods, having pivoted to its head on horizontal horns or pins two forward extending rods, one of which connects by a pin with a perpendicular rocker-arm, to whose lower end is pivoted the valve rod, while the other forward extending rod connects with a fixed slotted arc that hangs nearly parallel with the rocker-arm, a pin in the end of the rod sliding in the slot of the arc. This pin serves as the ful crum on which the gear operates, and is adjustable by means of lever and suitable connections in the slot of the arc,
whereby the cut-off may be varied and the steam reversed. Motion is transmitted to the gear by a quadrant-lever, fixed on the parallel rods.

Earthquake at Sea.

Capt. Horner, of the German ship Stella, from Bremen to Baltimore, arriving April 15, reports that on the morning of March 18, in latitude $37^{\circ} 21^{\prime}$ north, longitude $23^{\circ} 51^{\prime}$ west, his vessel suddenly halted in her course with a shock that gave to those below the impression that the ship had struck
a rock. The weather was clear and the sea smooth and calm. Neither the chief mate, who was on the quarter-deck at the time, nor the look-out, could account for the strange occurrence. The captain ordered the heaving of the lead, but found no bottom at 100 fathoms. The pumps were sounded and the ship found to be tight. The shock lasted
only half a minute, after which the ship went on as before.
Capt. Horner himself went aloft, but could discover no Capt. Horner himself we
sign obstructious.

Converting Water into Steam Without Heat.

To the Editor of the Scientific American

Reading your remarks concerning the instantaneous ex pansion of the water at the bursting of the boiler in Mr. Lawson's test, on page 230, it called to mind some experiments at Ballston Spa, N. Y., some few years since, where a lot of boys were trying to make a great noise with a small gun in celebrating one Fourth of July. After using paper wads to but little effect, I suggested water. The gun had a caliber of about 1 inch, and some 12 inches long. We put in 2 ounces of rifle powder, then rammed down a good paper wad, then filled the bore up to within 2 inches of the nozzle with water, then put on another hard wad ; the gun being placed on a carriage, which elevated its nozzle about 22 degrees. Fearing explosion, we set a slow match, and ran away. The charge gave a loud report, sending the gun backward and over end some half dozen times. The water burst into vapor like a puff of steam from an engine, when the wind carried it away. This appears a very quick way of getting up steam; whether economical or not I am unable

> Sandy Hill, N. Y., April 17, 1882.

The Lawson Boiler Experiment.

To the Editor of the Scientific American:
In the boiler test by D. T. Lawson, described on page 230 , did not the cutting away of the diaphragm and allowing the whole strain of supporting the heads to be sustained by the one inch stay rod, weaken the boiler sufficiently to account for it giving away at the 65 lb . less pressure than it sustained with the diapbragm intact? It so appears to me, as in all probability it was the first point of rupture

Ground Air as a Souree of Disease
To the Editor of the Scientific American :
In connection with the article, "Cellars as Centers of Malaria," in your valuable paper of January 14, it may interest and bencfit many of your readers to stale a fact cbserved by me in Berlin, Prussia, a few years since. It is this: Before building lots are about to pass into hands of intending intelligent occupants, they almost invariably first obtain a specimen of the air contained in the soil at the site of the intended dwelling for analysis, because it has been found that such air invariably fills the cellar, and if un wholesome causes disease. The fact observed by many farmers in this country, that certain cellars are unfit for the storage of meat, however well salted, and milk, is a further proof of necessity to use intelligent care in the selection of a building site.
Deloro, Ont.
F. Koerner.

Courtship and Marriage among the Choctaws of
The two thousand Choctaws still living in their ancestral homes in Mississippi, retain, in their pristine vigor, many of the usages of their ancestors. Among these are the methods employed in conducting a courtship and the marriage ceremony.

When a young Choctaw, of Kemper or Neshoba county sees a maiden who pleases his fancy, he watches his oppor tunity until he finds her alone. He then approaches within a few yards of her and gently casts a pebble toward her, so that it may fall at her feet. He may have to do this two or three times before he attracts the maiden's attention. If this pebble throwing is agreeable, slee soon makes it manifest; if otherwise, a scornful look and a decided "ekwah" indicate that his suit is in vain. Sometimes instead of throwing pebbles the suitor enters the woman's cabin and lays his hat or handkerchief on her bed. This action is interpreted as desire on his part that she should be the sbarer of his couch.
If the man's suit is acceptable the woman permits the hat to remain; but if she is unwilling to become his bride, it is removed instantly. The rejected suitor, in either method employed, knows that it is useless to press his suit, and beats as graceful a retreat as possible.
When a marriage is agreed upon, the lovers appoint a time and place f or the ceremony. On themarriage day the friends and relatives of the prospective couple meet at their respective houses or villages, and thence march toward each other. When they arrive near the marriage ground-generally an intermediate space between the two villages-they halt within about a hundred yards of each other. The brothers of the woman then go across to the opposite party and bring forward the man and seat him on a blanket spread upon the marriage ground. The man's sisters then do like-
wise by going over and bringing forward the woman and seating ber by the side of the man. Sometimes, to furnish a little merriment for the occasion, the woman is expected to break loose and run. Of course sbe is pursued, captured, and brought back. All parties now assemble around the expectant couple. A bag of bread is brought forward by ner woman's relatives and deposited near her. In like man
posit it near him. These bags of provisions are lingering symbols of the primitive days when the man was the hunter to provide the household with game, and the woman was to raise corn for the bread and hominy. The man's friends and relatives now begin to throw presents upon the head and shoulders of the woman. These presents are of any kind that the donors choose to give, as articles of clothing, money, trinkets, ribbons, etc. As soon as thrown they are quickly snatched off by the woman's relatives and distributed among themselves. During all this time the conple sit very quietly and demurely, not a word spoken by either. When all the presents have been thrown and distributed, the couple, now man and wife, arise, the provisions from the bags are spread, and, just as in civilized life, the ceremony is rounded off with a festival. The festival over, the company disperse, and the gallant groom conducts his bride to his home, where they enter upon the toils and responsibilities of the future.Amer. Vaturalist.

Tornadoes and How to Avold Them.

The Signal Service Bureau has in press a monograpb, by Sergeant Finley, containing a review of the observations of six bundred tornadoes, with generalizations from the recorded facts and suggestions as to the methods which ought to be ollowed in the investigation of such storms.
The storm studies have occurred during the past 87 years in all parts of the country. From these it would appear that tornadoes occur most frequently in summer, and in the month of June. They have occurred, however, more frequently in April than in July, and in May and September than in August. Kansas is the State that has been most aflicted, and that notwithstanding the fact that the period during which tornadoes have visited it has been comparatively short. The State has had 62 tornadoes from 1859 to to 1881; Illinois has bad 54 from 1854 to 1851; Missouri has had 44 from 1814 to 1881; New York has had 35 from 1831 to 1881; Georgia 33 from 1804 to 1881; Iowa 31 from 1854 to 1881; Ohio 28 from $18: 3$ to 1881, and Indiana 27 from 1852 to 1880 . The States and 'I'erritories that bave had only one each from 1794 to 1881 are: Colorado, California, Indian Territory, Nevada, New Mexic.o, Montana, Rhode Island, W est Virginia, and Wyoming. The storms occur most frequently from five to six in the afternoon, although there is oo hour of the day that has been entirely free from them.
The average width of the path of destruction is 1,085 feet, and the storm cloud runs with a velocity of from twelve to sixty miles. The wind within the vortex sometimes attains a velocity of 800 miles an hour, the average velocity being 392 miles.
Among the most valuable suggestions of the paper are those with reference to the peculiarity of the movements of tornado clouds, contatning rules for arriving at their violence. A tornado cloud always has a center, and it aiways moves forward from west to east. It may, however, sway from side to side in its progressive movement. Cbanges in motion are sometimes very sudden. In the event of a sudden change the observer, who is east or south of east of the storm, should move quickly to the south. If he is northeast he should move to the north. If within a very short distance of the cloud the observer should run east, bearing to the south.

Woodpeckers and Bears Deceived by Telegraph.
At the Crystal Palace Electrical Exhibition, London, the Norwegian Telegraph Department exhibits two stuffed woodpeckers which have pierced a telegraph pole in search of food The explanation of this phenomenon, which is by no means uncommon in Norway, is as follows: The woodpecker feeds on insects which it finds under the bark of decayed trees; and it is supposed that the bird is deceived by the humming sound emitted by the telegraph post into the belief that the sound proceeds from the insects concealed in the wood; and that he is not undeceived until the perforaion is complete, and daylight, instead of insects, is dis closed to the astonished and disappointed bird. Mr Nielson, the Chief Director of Telegraphs at Christiania, further states that bears are very troublesome to his department, as they not unfrequently scatter the heaps of stones which are used to support the posts. The bear's fondness for honey is supposed to explain this proceeding; and his operations are performed under the belief that the humming sound proceeds from a bees' nest buried in the earth.

Castrating Fish.

Attention has lately been called in Germany to an art that used to be secretly practiced in Germany and England by skilled carp breeders, but which seems to have been lost during the present century. It was claimed by experts a hundred years or so ago, that castrated fisb were as much su perior in flesh to the uncut as the capon is to the ordinary cock, or an ox to a bull. Recalling this practice, a writer in a German fishery paper (translated for the "Bulletin" of the U. S. Fish Commission) says: The nutritious matter which would otherwise have served for forming roe or milt will certainly cause a more rapid increase of flesh and fat, and therefore an equally rapid increase in the weight of the fish. For such experiments young, but full-grown, fish should be selected (perbaps two or three year old trout) whose generative matter has not yet been fully developed (the time for trout would, therefore, be April and May) None should engage in such experiments but those who possess the necessary leisure and knowledge.

