Brivatific gmoritam

ESTABLISHED 1845.
MUNN \& CO , Editors and Proprietors.
published teekly at
NO. B' PARK ROW, NEW YORK.
o. D. MUNV.
A. E. BEACH

TELEIS FOR THE SCIENITIFIC AMERICAN. One cony, one year nostage included..
One copy, six months, postage included
Clubs.-One extra cony of The Scientific American will be supplie grat is for every club of five subscribers at $\$ 3.20$ each : additional copies a me proportionate rate. Postage prepaid.
Remit by postal order. Address MUNN \& CO . 37 Park Rom, New York
The Scientific American Supplement
is a distinct paper from the Scientific anymican. The supplamen't is issuad weekly. Every number contains 16 octavo nages, uniform in size
with Scientific American. Terms of subscription for Suplem:NT, 500 a year, postage paid, to subscribers Single copies, 10 cents. Sold b, all news dealers throughout the country
will be sent for one year postage tree, on Ambrican and suppilikmin papers to one address or different addresses as desired
apers to one address or different addresses as desired.
The safest way to remit is by draft postal order, or registered letter.
Address MUNN \& CO. 3 . Park Row. N. Y.

Scientific American Export Edition

The ScinT FIC AMlirican Export Edition is a large and splendid peri Afsal. jsyi:efl once a month. Each number ccntains about one hundre arge quarto pages, profusely illustrated, embracing: © M M M ost of the
plates and pages of the four preceding weekly issues of the cow wir AmıRICAN, with its splendid engravings and valuable information: Commercial, trade, and manufacturing announcements of leading house Terms for Export Edition, $\$ 5.00$ a year, sent prepaid to any part of th
world. Single copies 50 cents. Manu acturers and others who desir to secure foreign trade may have large, and handsomely displayed an nouncements published in this edition at a very moderate cost.
The SCIETIFIC AMEMICAN EXnort Edition has a larke guaranteed circu-
lation in all commercial places throughout the world. Adress MUNN \& lation in all commercial place
co. 3 i l'ark Row, New York.

NEW YORK, SATURDAY, NOVEMBER 12, 1881.

TABLE OF CONTENTS OF

the scientific american supplement.

No. 306,

For the Week ending November 12, 1881 ,
Price 10 cents. For sale by all newsdealers.
Engineering and mechinnics.-Siemens' Electric Tramway at Paris. 1 illustration. The Electrical Exhibition at 「aris.-The electrical railway.
Electric Railways and Transmission of Power by Electricity. By
IIEXANDER SIEMENS. An elaborate argument in favor of the $^{\text {and }}$ AlEXANDER SIEMENS. An elaborate argument in favor of the
practical application of electricity for the transmission of power.
Critical discussion of Dr. Siemens' lecture by the Rosal societs of Critical discussion of Dr. Siemens' lecture by the Royal society of rts. London.
On the Limiting Number of Teeth for Spur wheels. By Prof.C.
W. MacCond. I. OutsideGearing-Epicycloidal 'Reeth. II. Inside Gearing-Eipicycloidal Tecth. 8 figures
1 rial 'Trip of the Almirante Brown, the new
clad corvette buit for the argentine Rep
Improved Moulding Machine. 1 figure.
Improved Moulding Machine. 1 figure
'The Magnetic Separating Nachine at Pribr
The Magnetic Separating sachine at Pribram. 1 tigure........... 4887
Brick and Concrete and Concrete Gas Hold EmivaEr. Prize paper, Institute of Civil Encincers. Construction of tanks. 5 fleures. Sections of walls at dry well, trench, and pier.-Timbering,
crete was made.
Concrete for Embankments and Dams...
ii. NatURAL HISTORY, ETC.-The Population of Prussia Expansion and Contraction of Tree Trunks. Varieties
24 flgures...
The Army Poultry F .
Timber Trees from Seeds
III. GEOGRAPHY, GEOLOGY, ETC -The Present State of Mount Ethe Port of Catania.-Map of the upper region of Etna
v technology and chemistry - Destruct ve Distillation. Pratation of Neutral Oxalate of Potassium. By E. B. Si.... tLeworth
V. METEOROLOGY.-Rain Drops, Hailstones, and Snっw Flakes..
VI. ARCHITECTURE, ETC.-The New Cincinnati Union Depot.

THE NEW LYMAN-HASKELL CANNON

The Lyman-Haskell accelerating or multicharge cannon is made with a succession of cylindrical chambers called "pockets" below the bore whose axes point toward the muzzle of the gun and form with its axes angles of about 60 degrees. In these pockets are placed the accelerating charges of powder that ignite after the passage of the projectile, which is started by the explosion of the initial charge in the gun chamber, in the usual manner.
Col. J. H. Haskell, of New York, adopting the accelerat ng principle first introduced by A. S. Lyman, also of New York, the inventor of the "Lyman accelerating gun," has made a number of improvements on it which are now the property of these two gentlemen jointly with their assigns. The new Lyman-Haskell gun is expected to throw a projectile four calibers in length a distance of ten or twelve miles, leaving the gun at a velocity of 4,000 feet per second which, it is claimed, can be done without the danger of burst ing the piece, which would occur if the necessary force were generated by the explosion of a single charge.
A number of tests of the principle have been made Yard among them are those at the Washington Navy etil wher as in com , with a oak timber. At a distance of 200 yards, the profectile from the accelerating gun went entirely through this target and landed 100 yards beyond it, while the English projectile fired from the same distance, with double the charge of powder, failed to penetrate the same target. Gen. John New ton, U.S. Engineers, finds that a 10 inch accelerating gu will be as efficient as the 81 ton Armstrong, while a 12 inch accelerating gun will be more powerful than the 100 ton rmstiong
On the 24th of October a casting was made at the " Scott Foundry" of the Reading Iron Company, for a 6 inch Lyman-Haskell gun. This casting is made without cores and is to be bored for the pockets and will form the breech section of the gun. Its weight is upward of 50,000 . It was cast from two reverberating furnaces charged with 56,000 pounds of cold-blast charcoal pig-iron of the following brands

Brands.	No. 1 Furnace.	No. 2 Furnace.	
Maiden Creek.	3,680 pounds.	2,745	ounds.
Juniata.	3,670	2,745	.
No. 2 Richmond.	..15,425	11.555	\cdots
Falling Spring and No. 1			
Franklin..	.. 4,775	3,575	"
Remelted iron.	4.545	3,400	"

The section to form the muzzle portion will be cast separately ${ }_{1}$ and firmly joined by socket to the breech section. The whole is to be then lined with steel in one continuou cylinder for the bore and smaller ones for the pockets
The weight of the gun when completed will be 25 tons,
with a total length of 24 feet $1: 5$ inches. It will have a bore of 6 inches, and will carry a ball weighing 150 pounds of 4 calibers length. Eighteen pounds of hexagonal powder will be used in the breech, with 28 pounds of powder of finer cuality in each of the four pockets, making a total of 130 pounds. This is one hundred pounds more of powder than is ordinarily used, and by means of this system of explosion, the projectile will have a penetrating power as $11 / 2$ is to 4 , compared with other cannon. The initial velocity of the ball will be 4,000 fect in a second, while that of other guns is from 1,500 to 2,000 . The ball is calculated to penetrate two feet of wrought iron at a distance of 200 yards. By means of the successive discharges of powder from the four pockets the pressure upon the ball will be maintained, thus giving it its great velocity, which will carry a ball twelve miles. The explosion takes place in tough steel, supported by the strongest cast iron. After its completion, which will be in several months, the gun will be taken to S.andy Hook, where it will be thoroughly tested in the presence of army officers and distinguished scientists.

Conventionality in Designing.

An instructive commentary on our recent criticism of the conventional work oi the art schools. as contrasted with the genuinely artistic work of our tool makers and machinists, is furnished by the recent competition in wall paper designs instigated by Mesars. Fuller \& W arren.
Speaking of the disappointment occasioned by the designs
sent from France the critic of a morning paper says
Without being able to lay our hands at once upon the ${ }_{877}$ original sources of these designs-without even wishing to

Kensington schools, and the like; is less and less to be de pended on There has been for some time in England much groaning and complaint over the failure of the costly governmental methods employed to stimulate the faculty of design in the British subject, and whether the peoples of the continent are as well alive to their own failure or not, it is nevertheless true, that not only the Germans, the Aus. trians, and the Italians, but even the French, are reduced to the imitation of the work of the past in every department of manufacture calling for design. It is true they have caried this imitation, not only in the design, but in the manufacture itself, to the very highest point of perfection, so that the brocades and stuffs of all kinds, the metal works, the ceramics, the tapestries, carving in wood and stone, the glass, etc., that are produced to-day are, in all cases where price is of no importance, as well made as they ever were at any time, and even when a cheaper market is looked for these things are often of a very high degree of excellence. But original design has by no means kept pace with manufacture, and though there are a few striking exceptions to the statement,' it may be safely said that in design to day we are dependent on the work of those who have gone before. The design of to-day consists in clever copying or clever combining of what has been produce by other people in other times."

Medals for Electric Lights.

The jury of the International Electric Exhibition has awarded gold medals of the highest class to Edison and Brush for dynamo magnetic machines, and a gold medal to Maxim. Also, gold medals to Edison, Brush, and Maxim for are incandescent lights. Edison takes five gold medals in all, being more than any other exhibitor.

$\rightarrow+\ldots$

Copper in Subnitrate of Bismuth.

It is well known that commercial bismuth of ten contains copper, and that even when the percentage of copper is too small to color the nitric acid solution, the blue becomes very perceptible upon the additior, of ammonia for the purpose of precipitating the subnitrate. At first thought we are inclined to think that the ammoniacal compounds of copper, being very soluble in exeus of that alkali, would be easily removed by washins, but experience proves that this is not the case, as no ordinary care, nor even extraordinary perseverance, cals remove the blue tint. The following method therefore recommender in cases where it is required to remove copper from bismuth.
The bismuth is first dissolved in cold concentrated nitric acid, preferably an insufficient quantity. On the following day a mass of perfectly white transparen crystals are obtained, from which the bluish mother liquor is to be drained, and the crystalic washed with a little strong acid. In a day or two a second crop of erystals are obtained, and are also drained and washed in the same way. If by this time the mother liquor has become dirty or full of black specks, it is filtered through gun cotton. It may be neces. sary to concentrate it somewhat toward the end to obtain the last crop of crystals. Nitrate of copper, being exceed ingly soluble, remains in soiution to the last. When no more crystals are obtainable the little bismuth still in solution may be precipitated by ammonia, washed, dried, and worked over again. The different crops of crystailized nitrate of bismuth are triturated with a little water and poured into water, or ammoniacal water, as preferred. In case it is merely precipitated by water, about one-fourth remains in solution, and can be recovered from the filtrate by means of an alkaline carbonate in the form of subcarbonte of bismuth, a preparation of equal value to the subni trate. Where purification by crystallization has not preceded the precipitation of the subnitrate, the second pro duct, namely, subcarbonate from the filtrate, is frequently of a dark color, since all the foreign metals present in the whole of the original material are here concentrated into one precipitate.

Melbourne Awards.

Messrs. Joseph Burnett \& Co., of Boston, received at Melbourne the first order of merit for flavoring extracts and the second order for colognes and chemical products, instead of the second and third orders respectively, as was stated in the report of American awards at that Exhibition printed in the Scientific American Scpplement of July 2.

Electric Light in Rail cars.

Recently the Brighton (Eng.) Railway Company intro duced the electric light on a special train of Pullman cars. Thirty-two Faure secondary batteries were employed to the car, to operate a dozen Swan lamps. The illumination was said to have been satimfuctory

Compressed Air Motor for Elevated Railways. A very promising trial was lately made of a compressed air motor on the Second A venue Elevated Road. The air was stored in four tanks, under a pressure of 580 pound After running from 127 th street to 42 d street and back making the usual stops, the pressure was reduced to 125 pounds. The inventor claims that with proper facilities at ach of the road the motor can be charged in from two to three minutes time.

