tris." On this passage, Dr. Ogle, the English editor of Kerner's work remarks that This is but a single instance of the use of an unknown habits of bees was made by Aristotle. "A bee," he says, of the modes of work and action of these machines are very "، on any one expedition does not pass from one kind of plant to another, but confines itself to a single species, for instance to violets, and does not change until it has first returned to the bive.
Hybrid Fiskes.-According to Mr. R. B. Roosevelt, the fish hatching Commission bave raised bybrids between the following species of fishes: Salmon trout with whitefish; salmon trout with brook trout; ;rook trout with fresh water herring, with California salmon, and with the California mountain trout; shad with striped buss and herring. Of these crosses there are the young, now in the batching house, of the salmon trout brook trout, brook trout California salmon, and brook trout California brook trout. It is observable of all hybrids that theyare usually more shy and wild than either of their parents, and that in appearance they generally favor their larger parent. The cross between the brook trout and California salmon, and the salmon trout and brook trout bid fair to be fine fish. Those now in the batchery are eight inches long. It is to be hoped that further careful experiments may be made to ascertain whether these hybrids are fertile and capable of "producing fertile offspring
The Mullein.-The common mullein, regarded as but a common coarse weed in this couutry, and so common in fields as to often prove a nuisance, is cultivated in England for its beauty. A writer in the Cardeners' Chronicle says
that it " is well worth the attention of both amateur and professional gardeners." It seems that it is known in England by the common name of "Aaron's Rod." " There are two reasons," says this writer, " why it should be called by this name: first, the Romans dipped the stems in tallow, and burnt them at funerals. Secondly, the simple spike is long, cylindrical, and on it is a quantity of densely packed, very large, handsome golden-yellow flowers. The stem is five feet bigh. The fiowers, when dried in the sun, give out a fatty matter, which is used in Alsace as a cataplasm in hemorrboidal complaints. Formerly the plant was called
barbascum, from barba, meaning a beard, an allusion either to the shaggy nature of its foliage, or else to two of the five stamens, which are hairy.

Private Patents

Secret processes in manufacture are not uncommon now and here, notwithstanding the reasonable cost of a patent and the facilities for obtaining it. In England, where the cost and trouble of procuring a patent is much greater than here, these secret processes and receipts are very common, and the visitor to manufacturing establishments is fre quently interdicted from a thorough exploration. The practice is a perfectly proper one, as an inventor as much owns the product of his brain and skill as the money he bas earned; but there is always more or less risk attending the attempt to keep secret any profitable knowledge. If only one man possesses the secret, it is liable to be lost by his sudden death, to be possessed again only by a re-discovery. And although a certain prominent public lecturer may bave attached undue importance to what he calls " the lost arts," it is undoubtedly true that there bave been lost to the world really valuable facts in mechanics and chemistry and other arts and sciences by these attempts at secreting facts
But there are patents in use which belie the term. Any thing that is patent is "known" or "seen," the terms being synonymous. Yet there are methods of manufacture, compositions of materials, and machines for operation which have been patented and yet bave never become known to the public. In some of these instances this withholding of public information is designed and intentional, the bolders of the patents working it for their own profit, and believing that to be better for them than sharing it and receiving a royalty. It must be acknowledged that these are wiser than those who depend for their monopoly on their confidence in buman nature-in buman fealty-and run the risk of losing their advantage by death or unfaithfulness; for at the worst those who would share in the profits of the patented article may be compelled to pay fairly for it

The number of these private patents which are beld and used would surprise one who did not have good opportunities to ascertain the facts. And some of them are wonders of ingenuity and skill. One noted only a few days ago is a case in point. Among the productions of a busy concern recently inspected was that of drawer-knobs of wood. The extremely low price at which these knobs were sold was a surprise until the process of manufacture was witnessed; then it was apparent that the trifing price asked allowed a handsome margin for profit. A boy sat at a machine placing bored cubes of wood on a projecting pin that presented itself almost as fast as he could conveniently handle the blocks. Yet, every time he placed a block on the pin, a finished knob was thrown off, requiring only the insertion of a plug with which to secure the knob to the drawer, and varnishing to be ready to pack for the market. When the machine is prepared with the proper cutters it will turn almost any form of knob required, and being fed with the material in blocks it is absolutely antomatic. "Only two of these machines were made," said the superintendent. "Where is the other?" wasasked. "Out in the barn," was the answer. Here was a combination of self-acting tools that bad been parented, and yet not used except in the concern where it originated, and so prolific was it in product that a second machine had been found unnecessary.

This is but a single instance of the use of an unknown
though patented article. Some of the work done and some of the modes of work and action of these machines are very
curious. It would quite astonish the reader if it was proper to describe the action of machinery seen in operation re cently at a bolt-making concern. Some of the processes in the production of " bright goods"-those from stiff polished wire-practiced in certain concerns, and some of the operations in sheet metals, although patented, are unknown to the trade" generally
There is another class of unknown patents which are very like undeveloped mines of legally enjoined enterprises, of no profit to the owners and of no use to the world. Some of these patents lie useless because the holders have not the wisdom, energy, or money to push them. There are men who are keen enough to see the failures and note the shortcomings of others and cover their unprotected openings, yet who cannot understand their own advantage. They can invent and discover, perfect and improve, but they hardly know what to do with their creation or improvement. To be of any profit to them it should be made of use to others; but they neglect proper means of publicity, and eventually the invention or improvement is forgotten until some " live" man brings it out in different form, but perhaps no better shape, and claims the honors and reaps the profits. It is then, if ever, these slow coaches heave in sight. Then they begin to bluster about prior claims and prior discovery But generally the enterprising reinventor takes all the hon ors, gives his own name to the invention, and gets the emolu ments that attend on success.-Boston Journal of Commerce.

Submarine Topography.

The coast survey steamer Blake, Commander J. R. Bartlett, United States Navy, recently returned from a cruise the Gulf Stream, under instructions from C. P. Patterson, Superintendent of the Coast aud Geodetic Survey, has brought some very interesting data in regard to the depths of the western portion of the Caribbean Sea. The depths and temperatures obtained last year in the "Windward Passage" between Cuba and St. Domingo were verified, and a few hauls of the dredge taken directly on the ridge in this passage. The data obtained render it very probable that a large portion of the supply for the Gulf Stream passes through this passage, and that the current extends in it to the depth of 800 fathoms. A few lines of soundings with serial temperatures were run from Jamaica to Honduras Bank, via Pedro and Rosalind Banks, and it was found that the temperature of $39 \frac{1}{6}^{\circ}$, obtained at all depths below 700 fathoms in the Gulf of Mexico and the Western Caribbean, could not enter through this portion of the sea. But the temperature at the depth of 800 fathoms on the ridge in the "Windward Passage," between Cuba and Hayti, was found to agree with the normal tem perature of the Caribbean and Gulf of Mexico, viz., 3912°. Soundings were taken between Hayti and Jamaica, developing a general depth between these islands not exceeding 800 fathoms, except where broken by a remarkably deep channel connecting the waters of the main Caribbean south of St. Domingo with those north of Jamaica. This channel runs close to Hayti with a greatest depth of 1,200 fathoms, and a general depth of 1,002
fathoms. Its course is northerly along the western end of Hayti, where it does not exceed a width of five or six miles; thence westerly, south of Navassa Island, with a tongue to the nortbward between Navassa and Formigas Bank, and another to the westward between Formigas Bank and Jamaica. A line of soundings was run from St. Iago de Cuba to the east end of Jamaica, where a depth of 3,000 fathoms was found twenty-five miles south of Cuba. This deep place was found by subsequent soundings to be the eastern end of au immense deep valley extending from between Cuba and Jamaica to the westward, south to the Cayman Islands, well up into the bay of Honduras. The Cayman Islands and the Misteriosa Bank were found to be summits of mountains belonging to a submarine extension (exceedingly steep on its southern slope) of the range running along the southeastern side of Cuba. This deep valley is quite narrow at its eastern end, but widens between the western end of Jamaica and Cape Cruz, where the soundings were 3,000 fathoms within fifteen miles of Cuba, and 2,800 fathoms within twenty-five miles of Jamaica. Near Grand Cayman the valley narrows again, but within twenty miles of this island a depth was found of 3,428 fathoms. The deep water was carried as far as a line between Misteriosa Bank and Swan Islands, with 3,010
fathoms within fifteen miles of the latter. On a line between Misteriosa Bank and Bonacca Island there was a general depth of 2,700 fathoms; and a depth of over 2,000 fathoms extended well into the Gulf of Honduras. Between Misteriosa Bank and Chinchorro Bank the soundings were regular at 2.510 fathoms. North of Misteriosa and Grand Cayman to the Isle of Pines and Cape St. Antonio the
soundings were generally 2,500 fathoms. The serial temperatures agree, in relation to depth, with those obtained in the Gulf of Mexico by Lieutenant Commander Sigsbee, and in the Eastern Caribbean by Commander Bartlett; decreasng from the surface to 3911° at 700 fathoms or less, and constant at that temperature for all depths below 700 fath oms. At depths greater than 600 or 700 fathoms the bottom
was always found to be calcareous ooze composed of ptero pod shells with small particles of coral. These pteropod pod shells with small particles of coral. These pteropod
shells, as noted in previous expeditions by different nations,
appear to be an important factor in the determination of the ovements of great bodies of sea watcr. The ridge at the "Windward Passage" is bare coral rock, and on the south side the pteropod shells were found to be much more numeous than to the northward of the ridge.
Soundings and serial temperatures being the special objects of the cruise, dredgings were only incidentally attempted, for the purpose of reconnoitering, as it were, the ground; and it was found that the area passed over was not nearly so rich in animal life as that in which dredgings wer made last year under the lee of the Windward Islands, at the eastward of the Caribbean Sea.
The development of the extraordinary submarine valley in the Western Caribbean Sea is a matter of great interest considered as a physical feature. This valley extends in ength 700 statute miles from between Jamaica and Cuba nearly to the head of the Bay of Honduras, with an average breadth of eighty miles. Curving around between Misteriosa Bank and Yucatan, and running along between Cuba and the ridge of the Caymans for a distance of 430 miles with a breadth of 105 miles, it covers an area of over 85,00 square miles, having a depth nowhere less than 2,000 fathoms, except at two or three points (the summits of subma rine mountains), with a greatest depth, twenty miles south of the Grand Cayman, of 3,428 fathoms; thus making the low island of Grand Cayman, scarcely twenty feet above the sea, the summit of a mountain 20,568 feet above the bottom of the submarine valley beside it-an altitude exceeding that of any mountain on the North American continent above the level of the sea, and giving an altitude to the highest summit of Blue Mountain, in Jamaica, above the bottom of the same valley, of nearly 29,000 feet-an altitude as great, probably, as that of the loftiest summit of the Himalayas above the level of the sea.
For the deepest portion of this great submarine valley, the Superintendent of the Coast and Geodetic Survey has adopted the name of "Bartlett Deep."-N. Y. Herald.

CAPT. DOBBINS'S SELF-RIGHTING LIFE BOAT.

Capt. D. P. Dobbins of the Life Saving Service reports the practical success of the life boat built on his plan, the construction and testing of which was provided for by Congress last spring. Capt. Dobbins reports as follows to Supt. Kimball:

The self-righting surf boat authorized by letters of March 3 and 4, was completed and tested Thursday, June 17, by the keeper and crew of Life-Saving Station No. 6, under my personal supervision. The boat proves to be a perfect suc cess. It will right instantly and carry ber entire crew around with her when full of water as she is, on righting, and with her crew at their stations. She shows a side of over six inches out amidship, so she can be bailed readily. She is very stable or stiff under foot and in a seaway. It was quite difficult for the seven men to capsize her, full as much so as it is for the crew of the English self-bailing and righting ife boats to capsize them. The prescribed beam of the boa made it difficult to secure the ready righting I claim for my own dimensions, but I have succeeded at the loss of a heavier boat than I designed for a practical surf boat. She will weigh not over 1,009 pounds, however, which is 600 pounds less than our ordinary surf boats weigh. She is roomy, stout, stanch, and strong, and pulls easily, and is a oost beautiful sea boat."
This boat, which is not to be patented, dispenses with the heavy keel of the life boats now in use by the Service, and is "self-fighting" by virtue of its model.

Walnut Timber from Arkansas.

The towboat Ida reached New Orleans, out of the Arkan as River, on June 8, with a walnut log raft of unusual pro portions. Additional interest attaches itself to this raft on account of it being part of an order for $10,000,000$ feet from Bridgeport, Conn., sewing machine factory. The growing scarcity of this desirable wood in the Eastern States, and the demand by European furniture makers bas developed distant sources of supply. The raft in question had been ninety days making the trip from the forests along the W bite and St. Francis rivers, in Arkansas, and in that time drift, five feet deep, had accumulated beneath the logs. Of these the raft contained $2,500,2,000$ being walnut and 500 cypress. The latter are used as buoys for the heavier timber. This og island measured 400 by 208 feet, and many of the walnut logs were over six feet in diameter. They were cut by a band of 200 Canadians who are adepts at working in hard timber, and can get out 500 logs per day under favorable circumstances. From New Orleans the logs go by rail to New England, this transportation being found to be just $\$ 2$ per 1,000 less than by steamship. Col. S. M. Markel, of Missouri, has this contract, and has orders for walnut logs from Liverpool parties. The raft in question contained 600,000 feet, and is among the first shipments of the kind to the East.

A Sale of Fancy Cattle

An important sale of short-horn cattle took place at Chi Hon last day of June. The cattle were the property of Hon. M. H. Cochrane, of Compton, Canada, and Col. Le G B. Cannon, of Burlington, Vermont. The Seventh and Eighth Duchesses of Hillhurst brought eight tho lars each. There were sold altogether thirty-two cows averaging $\$ 995$, and bringing in all $\$ 31,680$. Eleven bulls vere sold for $\$ 6,845$, an average of $\$ 622$.

The Sense of Smell.

The sense of smell is composed of two parts-a physical and nervous. The Schneiderian mucous membrane is the physical portion; the first pair of olfactory nerves constitutes the nervous portion. The Schneiderian mucous membrane (named in honor of Schneider, who first demonstrated that the nasal secretions came from racimose glands in this membrane, and not from the brain, as was formerly supposed) lines the entire nasal cavities. The olfactory por tion, with which we have to deal in the study of the sense tion, with which we have to deal in the study of the sense
of smell, is easily distinguished from the rest of the nasal passages; in man, the sheep, and the calf, it is yellow; in most other mammalia it is of a brownish tinge: it is softer and thicker than other portions of the nasal mucous mem. brane. In man the epithelium of the olfactory membrane is covered with vibrating cilia, which are absent in most cause of the inferior acuteness of the sense of smell in man. cause of the inferior acuteness of the sense of smell in man.
The olfactory membrane is limited by a tolerably well deThe olfactory membrane is limited by a tolerably well de-
fined outline to the superior and middle turbinated bones fined outline to the superior and middle turbinated bones
and the upper part of the septum nasi. This portion only is capable of receiving odorous impressions.
The olfactory nerve or ganglia bas three roots, the exact origins of which bave not been definitely made out; the external root, which is of white matter, has been traced to the corpus striatum and optic thalamus, anterior commissure, and some fibers to the convolutions of the island of Reil. The middle or gray root arises from the caruncula mammillaris in the anterior lobe. The inner root of white matter arises from the inner and back part of the anterior lobe, and is probably connected with the gyrus fornicatus. These coalesce and run forward to the cribriform plate of the ethmoid bone, where there is a bulbous enlargement, from which are sent down the showers of filaments going to the olfactory mucous membrane. These filaments divide and subdivide, forming microscopic plexuses in the substance of the olfactory membrane, and appear to terminate between
the fusiform cells of that membrane. The olfactory membrane also reccives filaments from the nasal branch of the fifth pair of nerves, and is in direct communication with the spheno-palatine ganglion of the sympathetic. It seems probable that the sense of smell is due to the solution of the emanations from bodies in the fluid secreted by the racimose glands of the olfactory membrane, and in this condimose glands of the olfactory membrane, and in this condi-
tion coming in contact with the terminal filaments of the olfactory nerves produces a molecular change, either chemi cal or physiological, which change, when transmitted to the brain, gives rise to the sensation. As a general rule the longer the olfactory membrane is exposed to a particular odor the longer its effects continue; and in some cases it may be perceived for quite a while after the odoriferous substance bas been removed. A person once having perceived a certain scent, will sometimes recognize the same odor ceived a certain scent, will sometimes recognize the same odor
(even though be may have forgotten it) without anything causing an idea of it,save perbaps an irritation of the ganglion.
This ganglion is situated, according to Ferrier, in the tem-poro-sphenoidal convolutions, and is by him regarded as the psychological center of the sense of smell.-Medical Bulletin.

The Eating of Clay.

Among the extraordinary passions for eating uncommon things, says Prof. Johnson (Cbemistry Common Life), is to be reckoned that which some tribes of people exbibit for eating earth or clay. For instance, in Western Africa, the negroes of Guinea bave been long known to eat a yellowish earth, there called Caouac, the flavor or taste of which is very agreeable to them, and which is said to cause them no inconvenience. Some addict themselves so excessively to the use of it, that it becomes to them a kind of necessity to their live-as arsenic does to the Syrian peasants, or opium to the Theriaki-and no punishment is sufficient to restrain them from the practice of consuming it. When the Guinea negroes used in former times to be carried as slaves to the West India islands, they were observed to continue the custom of eating clay; but the caouac of the Americian islands, or the substance which the poor negroes attempted in their new homes to substitute for the African earth, was found to injure the health of the slaves who ate it. The practice was therefore long ago forbidden, and has now probably died out in the West Indies.
In Martinique a species of red earth or yellowish tufa was
still secretly sold in the markets in 1751 ; but the use of it still secretly sold in the markets in 1751 ; but the use of it
bas probably ceased in the French colonies also. In Eastern Asia a similar practice of eating earth prevails in various places. In the island of Java, between Sourabaya and Samarang, Labillardiere saw small square reddish cakes of earth sold in the villages for the purpose of being eaten. These were found by Ehrenberg to consist for the most
part of the remains of microscopic animals and plants, which part of the remains of microscopic animals and plants, which
bad lived and been deposited in fresh water. In Runjeet Valley, in the Sikkim Himalaya, a red clay occurs, which the natives chew as a cure for the goiter. The chemical nature of the substance has not been examined. In Northern Europe, especia'ly in the remote parts of Sweden, a kind of earth known by the name of bread meal, is consumed in bundreds of cartloads, it is said, every year. In Finland a similar earth is commonly mixed with the bread. In both these cases the earth employed consists for the most part of the empty shells of minute infusorial animalcules, in which
there cannot exist anv ordinary nourishment. In North there cannot exist anv ordinary nourishment. In North
Germany, also, on various occasions, where famine or necessityurged it, a similar substance, under the name of mountain meal, has been used as a means of staying hunger. In

South America, likewise, the eating of clay prevails among
South America, likewise, the eating of clay prevails among
the native Indians on the banks of the Orinoco, and on the mountains of Bolivia and Peru. Humboldt states that the mountains of Bolivia and Peru. Humboldt states that the unctuous, almost tisteless clay-true potter's earth-having a yellow-gray color, in consequence of the presence of oxide of iron. This they select with great care, and they are even able to distinguish the flavor of one kind of earth from that of another. At the periodical swelling of the river, which lasts from two to three months, and when all fishing is stopped, they devour immense quantities of earth. An Indian will eat from one-quarter of a pound to one pound and a quarter of this food daily. A similar practice prevails in the bill country of Bolivia and Peru. Dr. Weddell saw a species of gray colored clay exposed for sale in the markets of La Paz, on the Eastern Cordilleras, and which was called by the native name of Pahsn. The Indians, who are the only consumers of it, eat it in large quantities with the bitter potato of the country. They allow it to steep for a certain time in water, so as to form a kind of soup or gruel, and season it with salt. At Chiquisaca, the capital of the
State, small pots made of an earth called Chaco are exposed for sale. These are eaten like chocolate. The eating of certain varieties of earth or clay may therefore be regarded as a very extended practice among native inlabitants of tropical regions of the globe. It serves, in some unknown way, to stay or allay bunger, stilling, probably, the pain or craving to which want of food gives rise. It enables the body to be sustained in comparative strength with smaller supplies of ordinary aliment than are usually necessary; and it can be eaten in moderate quantities, even for a length of ' time, without any sensible evil consequences. A fondness
even is often acquired, sa that at last it comes to be regarded and eaten as a dainty.

Botanical Notes.

Influence of Light on Sise of Leaves.-M. Ch. Flabault, in the Annales des Sciences, brings forward additional observations to support his view that under equal conditions, the leaves of plants of the same species are larger in proportion as we go northwards, these relatively larger dimensions being due to the duration of light of relatively feeble intensity. In cases where the chlorophyl is formed in the absence of light it must be formed at the expense of the materials stored up in the tissues. The importance of these reservoirs of nutriment is still greater in the case of flowers. Thus, in the case of hyacintbs, both blue and red. M. Flalault found no difference in the color of the flowers. grown in the light or in the dark, the color being manufactured from the stores of material in the bulbs.
A Wonderful Tree.-Baron Ferd. Von Mueller says in his "Eucalyptographia," that one of the grandest trees of the lobe, and one of the greatest wonders in the whole creation of plants, is the Eucalyptus diversicolor. Astounding records of the height of this tree have been given. The Messrs. Muir saw trees with stems 303 feet high up to the first branch,
and Baron Von Mueller bimself noticed many which approactred to $4 ; 0$ feet in their total beight. When closely growing the young trees may bave a comparatively slender trunk, so much so that a tree 180 feet high may show a stem hardly more than a foot in diameter. Iu such a case the foliage, for want of space, is also only scantily developed, and the ramifications are but short in proportion to the tallness of the stems. In the mast.like straightness of the trunk and the smooth whiteness of its bark, this superb tree imitates completely the variety regnans of E. amygdalina, of Southeast Australia, with which also, and perbaps solely, it enters into rivalry as the tallest tree of the globe. Even the loftiest trees may not bave been found out yet in the secluded humid forest valleys, in which E. diversioolor, like E. amygdalina, rejoices most and luxuriates to the greatest extent. But possibly in the 200 miles of uninterrupted length of Sequoia forests, a few years ago rendered known to exist in Southern California, mammoth trees of Sequoia Wellingtonia
or S. sempervirens may occur, which possibly excel in stuor S. sempervirens may occur, which possibly excel in stu-
pendous beight even the famous individual trees of the pendous beight
Big Trees of the West.-Case's " Botanical Index" gives the following record of some large trees growing in Indiana: Chestnut. - In Jackson County there are to be found the largest chestnut treesin the State. They are veritablegiants, located about three miles southeast of Seymour. Onc of
these measures 22 feet in circumference 2 feet above the ground, and the height to the first limb is 70 feet. Sassa fras.-This tree attains a remarkable size on the Lower Wabash. One of these, nne mile and a balf west of Spring. field, is fully 3 feet in diameter, and for more than 60 feet clear of limbs and knots. Its beight in full is 85 feet. Catalpa.-In this same region and along the Wabash the catalpa grows slender and tall, and in great abundance. It
is used for both fence rails and posts, and for durability stands next to the black locust. Sycamore.-The giant tree of Indiana, in all probability, is a sycamore in the White River bottom, not far from Worthington. It is said to be 48 feet in circumference, and has a solid trunk. At a height of 25 feet it branches into three or four limbs, one of which must be more than 5 feet in diameter. The tree is not quite round, but still it is quite regular.
Botanical Gardens.-A paper on the botanical enterprises of the empire was read, May 11, to the Colonial Institute by Mr. Thiselton Dyer, Assistant Director of Kew Gardens. The lecturer gave a history of botanical gardens, which date
from the middle of the sixteenth century, when Alfonso
d'Este, Duke of Ferrara, the patron of Tasso, set the fashion of making collections of foreign plants and fiowers. The earliest public botanic garden was founded by Cosmo de' earliest public botanic garden was founded by Cosmo de'
Medici, in 1544, for the University of Pisa. The following year one was founded at'Padua. In France, the earliest botanic garden was founded at Montpellier toward the end of the sixteenth century; and in Germany, that of Giessen was established in 1614; and in the Low Countries, thatof Leyden dated from 1577. In England the Royal Garden at Hampton Court was founded by Queen Elizabeth, and supported by Charles II. and George III. Those which followed and still remain were: Oxford, founded in 1632; Chelsea, in 1673; and Edinburgl, in 1680. The origin of Kew as a scientific institution was entirely due to the Hanoverian priuces. Dur ing the reigns of Gcorge IV. and William IV. Kew was much neglected; but since that date, owing to the efforts of Lindley and Hooker, this state of things has been remedied. Plant distribution to all parts of the world is extensively carried out from the gardens, especially that of cinchona, caoutchouc, and Liberian coffee. The berbarium is the largest in the world. The example of Kew in the matter of largest in the world. The example of Kew in the matter of
museums and economic botany bas been followed by Hamburg, Berlin, Ghent, Paris, Boston, and the English colonies. Recently the whole vegetable collections of the India Museum have been transferred to Kew. Mr. Dyer stated that one of the most striking features of the gardens was the enormous correspondence with the botanic establishments of the colonies.
An Interesting Botanical Fact bas been discovered by M. Lemoine, of Nancy, who finds that the stigmas of double flowers are capable of fertilization by the pollen of single Howers, with the result of yielding seeds which in the ma jority of cases produce double flowers.

Setting Type by Telephone.

The London Times contains an article describing the sysem of telephonic reporting adopted by that journal, in order to bave the latest and fullest report of the speeches made in the Houses of Parliament. Permission baving been obtained from the Metropolitan Board of Works to lay down the necessary wires in the subway of the Embankment, a new con nection between the House of Commons and the Times office was formed, and one of Edison's loud-speaking telephones placed at either end. The immediate result of this arrangement has been to bring the compositor at the machine into direct communication with the Parliamentary reporter at the House, and to enable the debates to be reported and printed from half to three-quarters of an hour later than bad previously been possible. The notes made by the reporter can be read directly into the telephone receiver in a room adjoining the gallery eitber by the reporter himself when relieved or by another person employed for the purpose; and the compositor, at his machine in the office, sits with his ears in juxtaposition with the other terminal of the instrument. The plan which bas been found the most effiinstrument. The plan which has been found the most eftiof other kinds is to place the disk of the telephone alove and behind the compositor, and then to arrange two tubes, each with two trumpet-shaped extremities, in such a manner that these extremities are applied at one end to the two sides of the telephone disk and at the other end to the two ears of the compositor. The compositor is also furnisbed with a speaking instrument, with a key for ringing a bell, and with a bell which is rung from the House, a simple code of bell signals, consisting of one, two, or three strokes, sufficing for the ordinary requirements of each message. The compositor announces by the bell that he is ready, receives a sentence, strikes the bell to indicate that be understands it, sets up the type with his machine, strikes the bell again for the reader to continue his dictation, and so on until the work is carried as far as time will allow. If there is any doubt or difficulty about the words, a bell signal will cause them to be repeated, or explanations can be sought and reccived by direct vocal communication. In this power,
indeed, resides one of the chief advantages of the method, indeed, resides one of the chief advantages of the method,
and one which ougbt to lead to greater accuracy than bas and one which ought to lead to greater accuracy than bas
ever previously been attainable. The names of people, places, etc., can be spelled out letter by letter if there is any doubt about them.

Ice Gorge at Newton, N. J.

An interesting ravine, in which natural ice remains throughout the summer, is attracting local interest at Newton, New Jersey. It lies at the foot of Blue Mountain. is several hundred yards long, from ten to thirty feet deep, with aves and clefts in the rocks, filled with ice. The shade at the gorge is described as very dense, the sun apparently never penetrating it. The bottom of the gorge is covered with ice, and the little caves and crevices are filled with it. The parapet of the mountain, like the Palisades of the Hudson, is very nearly perpendicular, and rises about 400 feet above the ravine, through which a current of cold air sweeps constantly. The thermometer, which registered in the nineties in Newton, marked 38° at the bottom of this gorge-too cold for one to remain there any
length of time. A few feet from one end of the gorge a spring of the most delicious sparkling water bubbles up. It tastes slightly of iron, and is very satisfying to the thirst. The water in this spring stands at 34°. The owner of the farm on which the gorge is found, says that it is much resorted to for ice, so that by the middle of August but little remains except in the caves and deeper holes.

On the Advantages of Moistening the Air in Cotton

Considering the immense expenditure of brainsand money during the last forty years by inventors, machinists, and manufacturers, in perfecting machinery used in the several processes of cotton manufacturing, one might be led to suppose that a mill, equipped with modern machinery such as is turned out by the best makers, would always produce goods of uniform weight and quality. Experience, however, shows that at almost any time there may be found in such mills a variation of from one to five or more numbers in the yarn, and from one to three per cent in the weight of cloth, and sometimes the same or more in width, and a quality far from perfect, although the average weight may be at or near the standard by taking a month's work together. Carding and spinning overseers regularly weigh roving and yarn several times a day, and alter gears if need be; yet with all this care and watchfulness they are not able to prevent the variations noted, although there has been no change either in cotton or in the general operations of the machinery.
In the light of present knowledge it is unreasonable for manufacturers to expect or require machinebuilderstomake machinery that will produce uniform and exact results at all times, so long as no means are taken to produce a uniformity of atmospheric condition in which to operate the machinery. This has reference to variations of climate, and to electricity and dryness. Frictional electricity is generated by the motion of wind, belts, pulleys, fliers, bands, cylinders, beaters, etc.; also by the friction of rolls, bearings, etc. Its effects upon the cotton fiber are to cause it to cling to beaters, cylinders, and cylinder aprons, and to puff up the sliver, so that when it passes through the evener trumpet it delivers less actual fiber than intended, and less than it would if there was an absence of electricity, thus not only making variable sized yarn and cloth (as the electricity varies), but causing the work to run badly in the subsequent operations, which are set and calculated for a specific size of roving or sliver. In doubling and drawing thereis a constant loss and damage to the sliver occasioned by electricity, which causes the fibers to stand out and catch on to and lap round the rolls. The electrical condition of the air varies much, and we have so little knowledge about it, and so few means of measuring it, that it is almost impossible to tell when and how much to alter machinery to correct its effects. Some meansare needed in every department of a mill to absorb or destroy this disturbing element. Now it would seem that a remedy exists in moistening the air, thereby rendering it capable of conducting away the electricity as fast as it is produced.
A short time since, a well known and skillful American manufacturer had new cards of English make, which, when started, would take in cotton well enough, but the combs would not take it off the doffers until he bad pails of water set all around the cards, and had watered the surroundings.
The trouble was too much electricity, and carders of ten bave The trouble was too much electricity, and carders often bave
similar experience with common cards, especially in dry and windy weather. We must always remember that dry air is a pcor conductor of electricity. On the other hand, too dry air in some respects affects the running of the work in a cotton mill in much the same way as electricity, especially as regards the puffing-up of the sliver. Dry air absorbs the moisture from oil placed on bearings, thus depriving itof an important element of lubrication. Every band that drives a spindle ought to be, and is supposed to be, put on with just the amount of tension needed to run it properly. If the air at the time is dry, and changes to damp, then the band will be too tight, requiring more power to drive it, and more oil to lubricate it; while, on the other band, if the air were damp and changed to dry, the band would become loose, and would not drive spindle to speed, and hence would make slack-twisted, poor yarn. It is well known that carding and spinning as well as weaving runs better in damp air; moisture gives elasticity to yarn. In weaving, warp threads are sized or starched to prevent their being roughed up by the action of the reed and barness, but the reed and harness will rough up and rub off much fiber and starch unless the air is moist enough to keep them in place. The sudden blows of the lathe in driving in the filling strains the yarn severely; so, unless there is some elasticity in the yarn, it is very liable to break, and of course causes imperfect work and loss of production. It is a common practice among weavers to moisten the yarn by placing a wetted cloth over the warp beam, especially if the warp be bard-sized. Most manufacturers now acknowledge the need of regular moisture, and some vainly try to obtain it in weaving rooms by blowing off raw steam, which usually gives much heat, but little water to dampen the air with.

In our climate, when it is dry weather, the air contains one or two grains of moisture to the cubic foot of air, and when damp, from five to twelve grains of water to the cubic foot of air, each depending upon the temperature. It is not claimed that a proper regular humidity will remedy the defects of machinery, but it is claimed that it will absorb electricity, or destroy its power to injure the proper manipulation of cotton, as well as give the mostdesirable condition in which to produce the best goods at the chapest cost.—7he Universal Engineer.

Crystallized Prussian Blue.

To the various forms of Prnssian blue already known, such as soluble, insoluble, etc., we may now add a crystalline form. Prof. Gintl, in Prague, says that when freshly precipitated Prussian blue is treated with a slight excess of con-
centrated hydrochloric acid and gently warmed, it will dis-
solve. A larger excess of acid will dissolve it cold. The the workman to simply put in the stitches, making the boot resulting solution has a faift yellow color, and when diluted or shoe a hand sewed shoe in every essential particular. with water the blue pigment again separates. If thesolution Then the numerous wax and dry thread sewing machines be allowed to evaporate spontaneously at ordinary tempera- come in, adopted for every variety of work, from the finest ture, or is slowly diluted by the absorption of moisture from French kid or velvet embroidered slipper to the closing up the atmosphere, the Prussian blue will separate as a crystalline sediment, which possesses a magniticent copper luster in reflected light, and hence a glass surface covered with a thin layer of this sediment looks like a copper mirror. When magnified somewhat this sediment is seen to consist of individual crystals, which have an intense blue color in transmitted light, but seen in refiected light glisten with a fine copper red.
In every position the crystals present quadratic faces to the observer, and being perfectly indifferent to polarized light; we must conclude that they belong to the regular, or isometric system, although the crystals were too small to be measured. Gintl did not obtain crystals large enough to permit of an accurate determination of the crystalline form, hardness, and specific gravity, but, if the experiment were carried out on a larger scale, and by conducting the evapobe obtained.

It is also of interest to know that what is called Turnbull's blue, formed by precipitating a ferrous solution with ferridcyanide of potassium, reacts in the same manner when treated with hydrochloric acid, and similar crystals separate. This fact favors the theory previously advanced that Prussian blue and Turnbull's blue are perfectly identical compounds. If a solution of oxide of iron containing an excess of bydro chloric acid be mixed with a solution of ferrocyanide of po tassium, also containing hydrochloric acid, no precipitate is formed until diluted. With ferrous oxide and ferridcyanide, both containing bydrochloric acid, a pale yellow solution also results. In this solution sulphocyanides produce a red color, showing that the iron has been oxidized at the expense of the ferridcyanide, and then it unites with the ferrocyanide
formed. This favors the identity of Turnbull's blue and formed. This
Prussian blue.

What Constitutes a Conspiracy?

The preliminary contest in the St. Louis courts in the conspiracy suits of the Vulcan Steel Works against their workmen has been decided in favor of the company. The case is a somewhat peculiar one. James Tighe, Dennis Griffin, Michael Dimon, Martin Hanifin, Bart Fenton, Patrick Reiley, and Martin Hooley were employes in the converting department of the Vulcan Works. On the evening of the 5th of last April, when two heats of iron were partially melted, the cupola ladle filled with molten metal and the! pits covered with cooling ingots, these men are charged with conspiring together and suddenly going out upon a strike for higher wages. This placed the Vulcan superintendents in a predicament, and they allege that, were it not for the timely arrival of a sufficient force of men at the works just at the proper time, the metal would have become bardened in the receptacles, causing the works to lie idle and putting them to a great deal of expense in placing them in working condition again. With the assistance of the new workmen they succeeded in escaping actual loss. The arrest of the parties named followed for conspiracy. Their attorney moved to quash the proceedings on the ground that they had committed no offense under the common law. The acting State attorney claimed that it was both a statu-
tory and common law offense. The case was finally argued before Judge Cady, who delivered, at the session of the Court of Criminal Correction, the appended decision: "The statement contained in the information filed in this case, if true, constitutes, in my opinion, a clear case of conspiracy. It is doubtless true that there is no crime in the solitary fact that the several defendants agreed or conspired together that unless higher wages were paid they would cease work, but it is equally clear that for these defendants to confederate, conspire, and agree together to stop work under the circumstances and for the purposes alleged in the informafusal to perform a civil contract is not of itself a crime. But the circumstances alleged in connection with the refusal of these defendants and others certainly constitute an offense. I am, therefore, of the opinion that the motion should be overruled and the defendants put upon their trial."-Coal Trade Journal.

Labor-Saving Machinery.

The Shoe and Leather Reporter thus sums up the labor-saving appliances which have been introduced into the boot and shoe manufacture within a few years:
To enter into a detailed description, remarks the editor, of these labor-saving devices would be an almost endless task, but a general idea can be gained from the following: Among the latest inventions is the hydraulic shoe press, with which one operator can sole 700 pairs of shoes per day. Next comes the beating-ont machine, which is a most necessary adjunct to a large shoefactory. Then come several designs in power machines for trimming and planing the edges of soles of shoes, each doing the work of three men, and better than by
hand. Next comes the sewing-welt, or turn machine, hand. Next comes the sewing-welt, or turn machine, making a shoe as pliable and comfortable as one hand sewed, and it is bard to detect any difference, one machine being capable of making 120 pairs per day. Again, there is produced a lasting machine, whose work is simply perfect and wondersewing, which pricks the holes and trims the sole, ready for $;$
of the seams of the heaviest stoga boot or brogan. Again we have a patent vamp folding machine, which neatly and rapidly turns the edge of the vamp, leaving a neat and finished appearance, instead of a raw edge; heel-scouring and sand-papering machines are made in every variety; stamping machines for monograms on the soles, heel trimmers, and an endless variety of small but useful machines; peg cutting and nail rasping machines, that will clean the pegs and nails out of a shoe from beel to toe, from a child's shoe to a beavy boot, leaving the inside perfectly smooth, which do not dis turb the crimp or injure the upper in the least.
Then we have the boot and shoe crimping macline, two enirely separate inventions, the boot crimper being capable of perfectly crimping 12 to 16 cases of boots daily, and better than can be crimped by hand, and the shoe crimper that can finish in a perfect manner over 400 pairs per hour. In leather machinery we have glassing, stoning, pebbling, and polishing jacks, tanning and stuffing mills; hide unbairing machines that will do the work of 4 to 8 men, taking out the lime, doing away with the objectionable bating or drench ing, and doing 800 sides daily with ease. Then we bave the wonderful scouring or hide machine, that marvel of skill and ingenuity; union and belt knife splitting machines; bark mills, capable of grinding many cords of bark, wet or dry, daily; tan presses that will press perfectly one cord of bark per hour, and leave it so free from water that it can be immediately used for fuel; the wonderful leather measuring machine, for giving positive and instantaneous measurement of skins or leather. Then there is a new machine for softenng leather, by which every fiber is loosened and softened without injury, leaving the leather strong, soft, and flexible besides hundreds of other machines which are now being perfected. Our boot and shoe manufacturers are enterprising, and are always ready to adopt any new thing that has actual merit, and the shoe factories of to-day present a marked contrast with those of former years.

Field of Butter from Cream.

I have, for some time past, kept accurate account of the quantity of cream put into the churn and the butter taken out, and I find that one quart of pure cream, weighing pre cisely two pounds, will make one pound of butter, as near as can be figured. This is the thick cream, which is taken in an adherent, leathery skin from a shallow pan in which the milk is three inches deep, and has been kept until it is sour, but not thick. From cream taken from a pail eighteen inches deep, and which stood four inches deep on the milk, but which was semi-fluid, three pounds of butter was given by four quarts of the cream. This cream was in good con dition for churning, and needed no water to dilute it. It was distinctly sour, baving been skimmed from milk set thirty-six hours, and was kept fortyeight hours before churning. The churning was sixteen quarts, which yielded twelve and one-half pounds; the temperature of the cream was sixty-two degrees, and the time of churning was eleven minutes. The cows were Jersey and Ayrshire. The more solid cream was all from Jersey milk, was in the same condition as the other as to sourness; twelve quarts were put into the churn, and eleven pounds fourteen ounces of hutte came out; the cream was too thick to churn without con siderable water being put in. The temperature of this churning was sixty-five degrees, and the time eight minutes. There is no doubt that sour cream will make better flavored and more solid butter, and more of it, than sweet cream; the butter will also keep longer in good condition. Sweet cream butter is excellent, and may be exquisite, if very well made, for immediate use, but it deteriorates very rapidly, while sour milk butter improves by keeping for several weeks, if well made and well kept. But neither the milk nor the cream should be permitted to turn to "clabber," as Mr. Bonner terms it.-H. Stewoart, in Country Gentleman.

Rome to have an Exhibition.

It is proposed to have an International Exbibition in Rome in 1885-86, and a journal has been started to further the project. An effort is being made to secure for the Exhibition outside Porta Pia and Porta Salara, on the north side of Rome, embracing the Villa Albani, with its finecollection of sculpture and Italian garden; the Villa Borghese, with its pleasant walks and gallery; the Villa Ludovisi, adjoining the walls, with its casino, and the Aurora of
Domenichino; the Villa Patrizi; the Villa Torlonia; the Villa Ada-lately the king's property, but since bought by Count Telfener-which reaches to the edge of the Anio; and the tract lying between these estates, from the furthest of which the land drops suddenly down to the Campagna. giv ng a splendid view of Soracte and the Sabine Hills.

A New Breed of whales.
A whaling captain, lately returned from the Arctic seas, declares that a new breed of whales have made their appearance in those waters. They are supposed to have emigrated from the open sea at the pole. The skipper describes them as very much larger than the old whales, and very gentle and confiding. In former years when a whale was har pooned the rest of the herd threw up their flukes and made off. The new breed do not seem to mind in the least the capture of one of their number.-N. F. Evening Post.

