Srimutit (xmeritu.

MUNN \& CO., Editors and Proprietors.

published weekly at

NO. B' PARK ROW, NEW YORK.

O. D. MONN.

A. E. Bescif.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy, one year, postage included... $\mathbf{1} \mathbf{6 0}$
One copy, six months, postage included Clubs.-One extra copp of THE SCIENTIFIC AM ERICAN will be supplied
gratis for every club of five subscribers $\$ 3.20$ each : additional copies at same proportionate rate. Postage prepaid.
Remit by postal order.
Address prepaid.
MUNN \& CO., 37 Park Row. New York.
tT To Advertisers. - The regular circulation of the Soientifio
AERICAN is now Fifty Thousand Copies weekly For 1880 the American is now Fifty Thousand Copies weekly For 1880 the publishers anticipate a still larger circulation.

The Scientific American Supplement

is a distinct paper from the SCIENTIFIC AMERICAN. THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages, with handsome cover, uniform in size with ScIENTIFIC AMERICAN. Terms of subscription for SUPPLEM iNT, ${ }^{\text {q5 }} .00$ a year, postage paid, to subscribers. Single copies 10 cents. Sold by all news dealers throughout the country Combined Rates. - The Scientific American and SUpplement
will be sent for one year, postage free, on receipt of seven dollars. Both papers to one address or different addresses, as desired. The safest way to remit is by draft, postal order, or registered letter.
Address MUNN \& CO., 37 Park Row, N. Y.

Scientific American Export Edition.

NEW YORK, SATURDAY, DECEMBER 13, 1879.

TABLE OF CONTENTS OF the scientific american supplement No. 206.
For the Week ending December 13, 1879. Price 10 cents. For sale by all newsdealers.

HI. Fiferpinctry sorvi, LIGHT, ETC.-Duplex Telephone. 1 Ifgure

 IV.

the scientific american as an educator of the YOUNG.
 It is a common remark of teachers that a very brief ac

 quaintance with the pupils of a school suffices to determin which come from reading families, which do not; and it is scarcely less easy to decide what kind of reading is current in a family. The intellectual society which young people enjoy tells upon their moral and mental character not less powerfully than do their social affiliations. The devourer of sensational stories is as little likely to excel in studies requiring patient effort and sobriety of mind, as the habitual reader of the Scientific American is to run away with atwo-dollar pistol and a brierwood pipe, to hunt buffaloes two-dollar pistol and a brierwo
and slay Indians on the plains.
In speaking of the Scientific American as reading for boys, we do so with a full appreciation of the fact that it is conducted rather for the instruction and enjoyment of men. Nevertheless the amount of matter it furnishes of a nature to interest boys-or, more explicitly, perhaps, the number of boys who find it a perennial source of entertainment and instruction-fully justifies a few words with respect to its value as a family paper. In thousands of families its weekly appearance is hailed with as lively a sense of satisfaction by the young as by the old, and very many of the staunchest supporters of the paper have read it almost from child hood.
A day or two since we had the pleasure of an interview with a New England clergyman, whose pride in the practi cal and scientific bent of his son's mind was pleasant to see not the less so because the father attributed the son's succes as a student chiefiy to the influence of the Scientific American. Some years ago the boy's grandfather, a pro fessor in a well known college, presented him with a sub scription to this paper. The effect would be marvelous, if it were an isolated case, in giving a serious and practical bent to the Joung man's development. Boys very commonly turn their surplus energy to mischief simply for lack of better occupation. They must be doing; and the ordinary routine of schooling furnishes little to satisfy their natural want for bodily activity, exploration, and constructive occupation. The Scientific American meets the want Its illustrations of nature and art are attractive and sugges tive. The boy is led to take more than a trivial interest in the phenomena of nature, and in the work that men are - doing the world over. He observes, experiments; in short, finds pleasurable occupation, according to his bent, in activities that tell most beneficially upon his mental habits, the general tenor of his thinking, and the advancement of his physical, mental, and moral development.
This has been the experience of multitudes of parents. And even if the education the boys receive, directly and indirectly through the information and suggestions furnished by the paper, were of no value whatever, its influence would be good in preventing activities that are harmful. So long as a boy is busy at a windmill, a telephone, a toy steam engine, a rowboat, or other scientific or mechanical undertak ing, he is pretty sure to be kept from mischief, frivolity, and vice. We have been told by teachers of experience that, excepting an occasional boy of vicious taint by inherit ance, the most hopeful boys were those of the worst repu tation for mischievous activity. Their energy took that channel simply because no other had been furnished them Only get such boys interested in something else and their
troublesomeness disappears. The boy that is "into every. thing," and a perpetual torment because of his misdirected energy, will soon find something better to do if a,wider range of activity is once brought within his ken. And not a few parents have found in the Scientific American a ready means for turning mischievous activity into useful channels.

THE REGISTRATION OF TRADE MARKS

As announced in this paper last week, the Patent Office will continue to register trade marks, but only in favor of hose who shall request such registration with full know ledge of the decision of the Supreme Court, adjudging the trade marks act of July 8, 1870, to be unconstitutional. Action on all pending applications has been suspended, to await instructions from applicants. The Commissioner of Patents also announces that fees heretofore paid in trade mark cases cannot be refunded without further legislation from Con Bel
Below is the official summary of the points held by the Supreme Court with respect to the origin of property in trade marks, the nature of trade marks, and the constitu tionality of congressional legislation in regard to them:

1. Property in trade marks has long been recognized and protected by the common law and by the statutes of the States, and does not owe its existence to the act of Congress providing for their registration in the Patent Office.
2. A trade mark is neither an invention nor a discovery, or the writing of an author within the meaning of the clause of the Constitution in regard to securing to author coveries.
3. As a regulation of commerce, if trade marks can be in any case the subject of congressional action, that action is limited by the Constitution to their use in "commerce with foreign nations, among the several States, and with the Indian tribes.
4. The legislation of Congress in regard to trade marks which looks to a regulation thus limited, but in its character,
it embraces, and was intended to embrace, all commerce, including that between citizens of the same State
5. As the statute is so framed that ist is impossible to sepa rate that which has reference to commerce within its con rol and that which is not, and as Congress certainly did not intend to pass the limited registration law which such a construction would imply, the whole legislation must fall, as being void for want of constitutional authority.
About a year ago the United States Trade Mark Associa ion was founded to promote the interests of trade mark owners. At a special meeting in this city, November 24, to consider what steps should be taken in regard to the action of the Supreme Court, quite a number of prominent manu facturing firms were represented. In his opening addres, he president, Mr. Orestes Cleveland, of the Dixon Cructble Company, called attention to the fact that the rights of rade mark owners had not been in any way affected by the decision. The law declared unconstitutional had merely provided an office for the registration of trade marks properly adopted though not yet in market. The only value f such an office was the means it afforded for establishing priority. He thought the protection of trade marks was due as much to the public as to manufacturers. This wa the ground taken by the court in the first infringementsuit tried in England. Damages were awarded to the buyer of the spurious article, though denied to the manufac turer.
It was suggested that the association should establish an office for the registration of trade marks, to secure the dvantages hitherto obtained through the Patent Office The same plan has apparently worked well in France, and could no doubt be made useful here. The Union des Fabri cants, founded in Paris, in 1877, has, it is said, already col ected and classified some 30,000 trade marks. The Union also takes pains to get and keep copies of all infringement suits, besides collecting such facts of daily occurrence a elate to industrial property and promise to be of use to the members. A similar office in this city, as proposed by the Trade Mark Association, could make itself very useful.

HOW TO JUDGE OF LEATHER IN BELTS.

Without entering into the question of the merits or de merits of rubber or other kinds of belting, one cannot but notice the want of unanimity of opinion, even among belt manufacturers, as to what really constitutes the best leathe for making belts to convey power in running machinery and, if we include makers of belts on the otber side of the Atlantic, the differences in theory and the divergence in practice are much wider than they are here. As a rule, too this is a matter about which machinists generally have but little information, and are, with here and there only a rar exception, but indifferent judges. The good mechanic may know the size of a pulley or wheel required to give the ne cessary bearing surface, the weight of belt which should be used, and at what tension it should be run to most effectu ally transmit a given amount of power; but when it comes to judging of the qualities of different kinds of leather, with respect to the amount of even and steady wear that one will give as compared with another, he is almost invariably quite at sea. Of the general appearance and finish of the belting we are not now speaking; although important de tails render good judgment in regard to many points here quite necessary, these are not necessarily dependent on the intrinsic quality of the leather used, and it requires only the intrinsic quality of the leather used, and it requires only
a good mechanical eye to see whether a belt is smooth, solid, a good mechanical eye to see whethe
well-jointed, and lies even and true.
The best belt, theoretically, is that which combines the highest tensile strength with the greatest power to resist wear by attrition, being at the same time subject to little change by dryness, moisture, heat, or cold. These quali ties, supposing the manufacture to be ordinarily good, are mainly dependent upon the tanning. But right here it is to be remembered that perfectly raw hide has greater tensile strength than can be possessed by any leather made from it. The raw hide, however, would never answer, for many and obvious reasons. The question then arises as to how much and what kind of tanning will best preserve the tensile strength of the hide, while imparting to it those other quali ties needed in good belting, and how can such tanning be judged of by one not an expert in the leather business. In Europe there is very little difference known or acknowledged between good sole and good belting leather. The heaviest or "plumpest" leather is usually considered there the best for belts, as well as for the soles of boots and shoes. Our belt makers, however, recognize an essential difference. The sole of a boot or shoe, particularly in all heavy work, need to have but little flexibility, but must have the greatest pos sible capacity to resist wear by attrition, and be, as far as practicable, impervious to water, while it is never subjected to any test of its tensile strength.
Sole leather, therefore, in all the toughest wearing grades s made as thick and solid as the tanner can make it; great care is taken to open wide the pores of the bide, in the early part of the tanning process, see that all the gelatine is saved to combine with tafinin, and that the hide is left in the tan iquors long enough to take up all the tannin it will absorb This makes the finished leather oftentimes a great dea thicker than the original bide. But such leather, it need hardly be said, would not be the best for making belts, for it has little flexibility, and its tensile strength has been reatly impaired by the straining of the fibers of the hide to take in the large amount of tannin it has received. The tanner who would make the best belt-leather, how
ever, although he cannot swell the fibers of the hide with are exceptionally brave and capable navigators, who take tannin to the extent above noted, must produce a firm, solid an honest and honorable pride in their work; but there can article, with not a little of the elasticity and strength of be no question of the fact that their exclusive devotion to steel; it must be sufficiently flexible, and yet of great power to resist wear by attrition, and to stand, with little stretching, the heaviest direct strain. These qualities are best obtained by an amount of tanning which will make the finished leather but little thicker than the raw hide of which it is made. On cutting a piece of sole or belting leather, one will notice the network of hide fibers interlacing each other, and which, before tanning, were surrounded with gelatine. These fibers give the hide its great tensile strength, and any considerable displacement of them by the transformation of the hide into leather impairs this quality. A piece of good belt leather, therefore, when freshly cut, should look bright, with the intervening spaces between the fibers fine, even, and regular. The texture should be uniform throughout, and with the utmost solidity there should be great elasticity. No rule can be given by which the exact amount of tanning to make the best belt leather can be determined, but it is certainthat to make heavy belts only the largest and heaviest hides should be used. The amount of tanning different kinds of leather receive varies widely, but there is a sort of regular gradation whereby, leaving out altogether the proportionate weight of the raw hide, sole leatber receives the most tannin, with belt leather, harness, heavy upper, calf skins, and morocco following next in order, until we reach kid stock, which is generally finished with alum, and known as a tawed rather than a tanned product.
In judging as to the kind of tanning material which makes the best belt leather, there is very general unanimity in favor of oak bark. Hemlock bark is used to some extent in making belt leather of the cheaper grades, but various devices are resorted to with the design of giving the leather the ap. pearance of oak, and thus deceiving the purchaser. The difference can, in nearly all cases, be readily detected by comparing the hemlock with the oak leather, and it is pretty well known, by all who care to be informed in the matter, just what tannages of leather the different belt makers use. In England various " mixed" tannages of leather are em. ployed, i. e., the leather is made with valonia, divi-divi, myrabolams, and gambier, instead of bark, for the tanning material; but these all make an inferior grade of leather, both for belts and for the soles of boots and shoes.

THE YEAR? PRODUCT OF GOLD AND SILVER.

The annual report of the Director of the U. S. Mint states that the production of the precious metals in the United States in 1879 was considerably less than that of the preceding year. It has resulted from the diminished yield of the mines of the Comstock lode. A depth has been reached of 1,000 feet below the bed of the Carson River, and impediments are encountered from accumulations of waterand from the oppres sive temperature, which discourage and have retarded vertical explorations. This has caused a falling off in the total yield of the States as officially repu tod, which in 1878 was $\$ 47,076,863$ of both gold and silver, but which for 1879, J F. Hollock, the State Comptroller, reports to be only $\$ 19,305,473.97$ from the production of the preceding year. Although the production of Nevada will be large and con tinuous for many years, it does not appear probable that the mines of that State will make such enormous contributionsto the mineral wealth of the country as they have in previous years. This decrease has been in part compensated by the results of the more thorough exploration of the mining regions of the Rocky Mountains, especially in Central and Southern Colorado. The production of that State was at least $\$ 6,000,000$ greater in the last than in the preceding year, and will probably furnish an undiminished if not an increasing amount of silver in the future. After careful inquiry and consideration of the yield of different localities and mines in the United States, the Director estimates the total production of the precious metals in the country for the
fiscal year 1879 at $\$ 79712000$ of which $\$ 38900000$ was fiscal year 1879 at $\$ 79,712,000$, of which $\$ 38,900,000$ was gold, and $\$ 40,812$, c 00 silver, as nearly as can be ascertained from official and other trustworthy sources.
Nearly all the gold and a large portion of the silver pro duced in the United States during the last year was coined at the mints or used in domestic manufactures, arts, and ornamentation. The surplus was exported to non-produc-
ing countries. From all information it is safely assumed that the annual consumption in the United States of precious metals in all forms for manufacturing purposes now average $\$ 7,000,000$ of gold and $\$ 5,000,000$ of silver.

steam pilotage.

The first effect of every new improvement in industrial means and methods is to hurt somehody. The greater the improvement the greater the hurt; and naturally also the more vigorous the protest against the change hy those whose professional or financial interests are bound up with and de pendent upon the old.
This universal law is aptly illustrated in the war over th new steam pilot boat lately introduced in the harbor of New York. Hitherto our pilot fleet has consisted of sailing craft only. They have been splendid boats of their kind, and admirably handled. The capital invested in them has been something like $\$ 200,000$; and 117 of the 183 pilots having an interest therein protest that the introduction of steam pilot boats would tend to destroy this investment and seriously injure the service. The existing system undoubtedly possesses many admirable features; the pilots
sails is a mistake. The adoption of steam pilot boats for inshore service cannot fail to prove advantageous to our shipping, now frequently delayed by calms, darkness, adverse winds, or ice, against which sails are unable to contend successfully. In such cases, steam pilot boats must be much more promptly serviceable; and the sailing pilots admit the fact when they protest so vigorously that steam will destroy the value of their sails. That is their misfortune; a misfortune which befalls sooner or later every vested interest in these times of progress. With all respect to the pilots who have had a practical monopoly of the trade so long, their interests are in no way commensurate with those of the shippers and ship masters of New York; and if the commerce of our city is to be benefited by the change from sails to steam the change will be made. The good of the many overrides the interest of the few, however meritorious may have been the service displaced thereby.

chicle.

The great interest manifested by technical men in the search for substitutes for India rubber and guttapercha has led Drs. George A. Prochozka and H. Endemann to make an examination of the Mexican product known as chicle or sapota. The latter name seems to imply that the product is derived from one of the many species of sapotacer, one of which is pointed out as the tree furnishing balata. With the latter product chicle shares many qualities, and possibly may differ fromit only in consequence of the mode of col lecting. Chicle comes from Mexico; balata from British Guiana, being the concrete juice of a tree variously called Mimusops balata, Achras balata, Achras dissecta, and Sapota muelleri. While balata is an almost pure hydrocarbon, with its various products of oxidation, Chicle contains also the arious impurities of the juice from which it is derived.
The results of the examination of chicle by Drs. Prochozka and Endemann are given in the first volume of the Journal of the American Chemical Society. The material came in cakes of a chocolate or flesh color, especially on the surface. It crumbled between the fingers, yet had a certain
degree of softness and tenacity, which was increased by degree of softness and tenacity, which was increased by
heating. In the mouth it first crumbled, then united into a soft plastic mass-a quality which has made it a favorite material for chewing gum. On heating, a sweet caramel odor was evolved, then the peculiar smell which is generated when caoutchouc or guttapercha is heated. It disintegrates when boiled with dilute acids, the brown solution contain ing oxalic acid and saccharine matter. The residue boiled with dilute solutions of caustic alkalies unites again, and forms a doughy mass. Approximately its constituents were:
Chicle resin or gum, forming 75 per cent of the crude material; oxalate of lime (with small quantities of sulphate and phosphate), 9 per cent; arabin, about 10 per cent; sugar, about 5 per cent; salts, soluble in water (chloride and sulFrof magnesia, small quantity of potash salts), 0.5 per cent. From this composition the authors hold it evident that out any attempt at separation, as is practiced in the , with out any attempt at separation, as is practiced in the case of
guttapercha and India rubber; and they do not doubt that guttapercha and India rubber; and they do not doubt that
by proper treatment of the juice a product far more valuable than the chicle gum now sold would be obtained. Whether such product would be similar to guttapercha, balata, or India rubber, they are unable to say. That must be deter-
mined by an examination of the raw juice, which they had mined by an examination of the raw juice, which they had not been able to obtain.

INVENTIONS WANTED TO UTILIZE SAWDUST.

The mill owners of Minneapolis are greatly perplexed by the volume of sawdust they produce, and not a little alarmed at a threatened law forbidding the present disposition of such waste by dumping it into the river. It is calculated that the sawdust from the summer cut of logs converted into boards at that place amounts to something like 300,000 cords-enough to furnish constant work for 150 teams to cart away. The millers say they cannot afford so heavy a burden of expense, and the river communities can as ill afford to have the river spoiled by the rapidly accumulating refuse. Even the steam mills are unable to burn all their waste, and the owners of them would no doubt gladly unite with their water using neighbors in turning over the surplus sawdust gratis to whoever would agree to cart it a way ${ }^{\text {T }}$ Three hundred thousand cords a year of good fuel is certainly worth an effort to save, and this is the product of but one locality.
Who will invent an economical mode of making sawdus marketable? And who will devise new applications for such materials? Most likely there are hundreds of easy ways in which such materials, now a burden, could be turned to of them and work up their practical applications. Such simple devices for utilizing waste products are often the sources of large profits.

the new atlantic cable.

The laying of the sisth telegraphic cable connecting the United States with Europe, was completed November 17. It extends from Brest, France, to St. Pierre, off Newfoundland, thence to North Eastlam, near Provincetown, Cape lines of the American Union Telegraph Company.

The cable was constructed by Messis. Siemers Brothers of England, and is considerably stronger than any of the cables previously laid. The central wire of copper is sur rounded by ten copper wires, twisted, insuring absolute con ductivity in all weather. For insulating purposes three envelopes of gutta percha surround the wire, and outside of the gutta percha is placed a wrapping of manila hemp treated with Chatterton's compound. An armor of steel wire for protection is outside the hemp, the wires composing the armor being laid in a peculiar manner, side by side, so that fractures seem almost impossible to occur. Surrounding the armor is another covering of manila hemp saturated with an anti-corrosive compound. Not only is the insulation of this cable regarded as superior to all others, but the celerity with which it was constructed and laid is without parallel in cable history. The work was completed in ex actly seven months from the day the concession to the company was granted by the French Governnent.

The Proposed Worlds Fair.

At a recent meeting of the World's Far Committee in this city, the secretary reported that since the last meeting of the committee an extensive correspondence had been conducted with the parties who were exhibitors at the Centennial Exhibition, with a view to ascertaining, as far as possible, how they had estimated the results of that display upon their business. He said he had received a large number of replies very strongly indorsing the project of holdıng a similar fair in this city in 1883, and asserting that the results of the las one as manifested in their business had been eminently satis factory. Many express themselves desirous of preparing exhibits for the projected New York fair. Various large concerns interested in the cotton industries, others in the different lines of manufacturing hardware, the iron and coal trades-all are willing to encourage the undertaking. The committee has corresponded with several eminent gentlemen in England, Spain, France, Italy, and elsewhere. These parties are willing to co-operate with the projectors of the enterprise. Among them are Señor Jordana, who was Commissioner from Spain at the Centennial Exhibition; Signo Dassi, Italian Commissioner to Philadelphia in 1876, and others.
The Chairman of the Commiittee on Sites reported that twelve sites had been offered, but only three were recommended from which a final selection could be made. These were Manhattan Square and adjoining propenty, on Eighth avenue, between Seventy-second and Ninety-second streets; the Washington Heights site, and that known on the list as the East Side Sands, of Brooklyn.
The Committee on National Legislation reported that they were prepared to present to Congress the bill which has heretofore been reported to the General Committee. A motion offered by Mr. Louis May, that a mass meeting, under the auspices of the General Committee, be held in the Cooper Institute, in December, for the purpose of giving an impetus to the World's Fair movement, was adopted.

The Audiphone.

Enough was accomplished at the public exhibition of the audiphone in this city, November 21, to show that we have in it an extremely promising aid to those afflicted with de fective hearing. It is quite possible, too, that it is the leader in a line of invention which will ultimately enable the mute to speak as well as the deaf to hear.
The instrument is simply a thin plate of vulcanized rubber shaped like a Japanese fan. When in use it is curved to give it the requisite tension, by means of cords attached to the outer edge of the fan and fastened at the junction of the handle. When the top of the fan is placed against the upper teeth the impinging sound waves create a sensible vibration which is conveyed through the teeth and the bones of the face (or possibly by the dental nerves) to the auditory nerve. With a little practice the sounds thus received are interpreted the same as if they reached the nerves of hearing through the ear; and thus the deaf are made to hear more orless dis tinctly, provided, of course, that the auditory nerve itself is not defective. Experiments are being made with a class of deaf-mutes to determine whether such unfortunates can be taught to speak by the use of this invention, a result strongly ndicated by the results thus far obtained. In any case the adiphone seems to mark a decided advance upon the old fashioned ear-trumpet.

A Singular Accident.

Recently the Scientific American lost a subscriber by n accident which should furnish a lesson of carefulness to railway hands. As two trains were approaching each other on the Central Railroad of New Jersey-one an express train unning at the rate of sixty miles an hour, the other a coal rain-the fireman of the latter threw out a piece of slate The stone struck some part of the express engine, and, glanc ng, passed through the window of the cab, giving death blow to the fireman of the easpress train.

Fact for Advertisers.

There were printed and circulated by mail. and through ews agencies, of last week's issue (No. 23) of the regula dition of the Scientific American, more than 75,000 copies, besides the usual large edition of the Supplement Advertisers will bear in mind that the publishers guarantee that every week's issue shall not be less than 50,000 copies and that it frequently exceeds that large number by severa thousands, as it did last week.

