ties, and this is a prominent trait of iodine. To the Ameri- between 9 and 2); we will thus have 217, and to this we can physician, indeed to the inhabitants of all Americursed by malarial fevers, this is a subject of unusual importance. It would be a national blessing to have an effective, safe, and cheap substitute for quinine; for, although the government has recently removed its protection from the latter, this action will affect not so much the pocket of the patient as that of the apothecary.
three rules for abbreviating multiplication.* (From the "Talkhys Amali al Hissab.")
The "Talkhys Amali al Hissab" ("Analytical Résumé of Calculating Processes"), written by Ibm al Banna, of Morocco, contains, in the chapter devoted to the multiplication of integral numbers, some abbreviated methods by means of which, in certain particular cases, the product of the mul. tiplication of two integral numbers may be obtained very quickly. As these processes deserve to be known, and are not found in any arithmetical treatise (although the "Talkhys" gave them nearly six centuries ago), we publish them for the benefit of our readers.
First Rule.-Suppose it be required to multiply by itself a number composed of figures, each equal to unity; for example, $11,111 \times 11,111$.
We say that the product will be, $123,454,321$.
To obtain this we write the number of figures contained in one of the factors, and to the left and right of this number we place symmetrically the natural decreasing series of numbers less than it. Thus, in the example proposed we write down 5, that being the number of figures in one of the factors, and then we place on each side of that number the natural decreasing series of figures less than that is, 4, 3, 2, 1, in the following form, 123454321.
A mother Exxmpite - Multiply $1,111,111$ by $1,111,111$. The product will be at once obtained by writing to the left and right of 7 (the number of figures contained in either of the two factors) the numbers $6,5,4,3,2,1$, as follows: two. factors the numbers $6,5,4,2,1$, as follows:
$1,231,567,654,321$. If we multiply 11 by 11 , the application $1,231,567,654,321$. If we multiply 11 by 11,
of the same rule will give as result, 121 .
Secesd Rule.-To multiply by itself a number composed of figures, each equal to 9 ; for example, 99,999 by 99,999 . We say that the product will be, $9999,800,001$.
To obtain this result, we write down the figure 8, placing to its left as many nines, and to its right as many ciphers, as there are figures less one, contained in either of the two factors, afterwards adding to the extreme right of the resulting number the figure 1 . Thus, then, in the proposed example ($99,999 \times 99,999$) we write the figure 8 , and to its
left the figure 9 repeated four times ($5-1$), and to its right four zeros (5-1), giving as a result 999980003 ; now annexing the figure 1, we obtain the product sought, $9,999,800,001$.

Another Example.-If we desired to find the product of 9 by 9 , we should obtain, by applying the general rule, 81 . In fact, in this cass, the number of figures of either factor, diminished by 1 , gives zero as a result. This explains why the figure 8 does not appear accompanied by nines or cipher, but only by the figure 1 of the units.
Third Rule.-To multiply a number composed of figures each equal to 9 , by another whose figures, although equal to each other, are different from 9 ; for example, 999 by 66.

In this case we say the product will be equal to 665,334 .
To obtain this result, we first obtain the product of a figure of the multiplicand by that of the multiplier; the figure of the units of this preliminary product will be the number of the units of the product sought. To the left of the figure of the tens of the said preliminary product we write the figure of the multiplier as many times as there are figures, less one, in eilher of the 1 wo factors; and to its right we place the same number of figures, each equal to the difference between a figure of the multiplicand (9) and a figure of the multiplier (6). To the extreme left of the quantity thus obtained we annex the figure of the unit of the preliminary product; thus we have the product sought. To make this clearer: in the proposed example, 999×666, the preliminary product will be $9 \times 6=54$; so that, to the left of the figure (5) of the tens, we place the figure of the multiplier (6) as many times, less one, as there are figures in either factor, which in this case will be twice ($3-1$), and to its right twice the figure 3 (the difference between 9 and 6), as ffllows, 66533 ; and to complete this number we annex to its right the figure (4) of the units of the preliminary product (54). We then have the product sought, $66 ., 334$.
Another Example.-Suppose it be required to imultiply $9,999,999$ by $3,333,333$. The preliminary product is 27 , and the number of figures in each of the factors is 7; so that, writing to the left of the figure 2 (of the tens of the preliminary product) six (7-1) figures, each equal to one of those of the multiplier (3), we have, 3333332 . Now, if to the right of the same figure (2) we write six figures, each equal to the difference between the figures of the two factors (9-3), we have, 3333339666666 ; and finally, we obtain the definite product by annexing to the right of the foregoing quantity the number 7 (the unit figure of the preliminary product), as follows: $33,333,326,666,667$.

Another Example.-If 99 be multiplied by 23 , as the pre liminary product is 18 , and each factor contains two figures it will be sufficient to write, to the left of the figure of the tens (1), the figure of the multiplier 2) but once, and to its right the figure 7 but once (the latter being the difference

* Translated from the Cronica Scientifica, of Barcelona.

between 9 and 2); we will thus have 217 , and to this we annex the number 8 (the unit of the preliminary product),

 annex the number 8 (the unit of the prelimand obtain the product sought, viz., 2,178 .
This rule will hold good in all cases except those in which the factors contain each but a single figure. If, for ex-
ample, we should apply the rule to the case 9×2, the preliminary product, 18 , would product. It is easy to see that the second rule may be product. It is easy to see that the second rule may be
considered as a particular case of the third-one in which the difference between the figure of the multiplicand and that of the multiplier is zero.

engineering inventions.

An engine valve, so constructed and arranged that the pressure of the steam upon the valve from above will be nearly or quite counterbalanced by the pressure from below has been patented by Lewis H. Baker, of Fairfield, Ill.
Mr. Jean L. Nevers, of Pass Christian, Miss., has patented in this country and in England an improvement in vibrating propellers, in which reciprocating propeller blades are employed, and the improvement consists in a novel device for controlling the propeller blades. In this propeller the change of direction is always under the immediate control of the person who has charge of the steering wheel, and though the motion of the engine may not cease, the positions of the blades can readily be changed at each stroke so hat they will exert no force upon the water.
Mr. James H. Gray, of Connellsville, Pa., has patented an improved device for attachment to locomotive, marine, and other engines, to operate them by compressed air. The invention consists in a series of air drums, arranged at some
distance apart in the water tank of a steam engine, con distance apart in the water tank of a steam engine, conpumps operated by the engine, and connected by a pipe along the outside of boiler with the steam chest and cyliners.
Mr. James H. Gray, of Connellsville, Pa., has patented a direct acting pump, in which a steam or water pump and steam cylinder are operated in connection with a single pisof valves, by which a steam chest is dispensed with and the pump is rendered cheap and effective.
A switch bar, having jaws which are adjustable lengthwise of the switch bar so that they may be moved to fit the rail, and the rails and jaws shifted to the desired gauge, has been patented by Mr. William K. Dun woody, of Eagle Mills, Mich.

Bearing Fruit.

Twenty-five years ago we went to the wedding reception of a charming and brilliant young woman from a New England State, just married to a young physician in a Western city. She had come from the best schools, and was the woman, of all others, who was looked at as a leader in the igher literary and artistic life of a prominent circle in the own. Seven years ago we again met that woman, now a matron of forty-five, in a Western university town, where her husband had finally landed as a professor of sciences in
the college. We saw that the family were living in quiet. the college. We saw that the family were living in quiet
and simple elegance on the small salary of a Western professor, with a house full of fine children, and no servant that we could discover.
At tea we ventured the question, "What has been the result of your studies and experience in the last twenty years? I have seen no book, or magazine article, or poem, over your name, as we expected." "I will show you my one book," she replied, leading the way to her kitchen. There she ex-
hibited a most ingenious machine for washing the dishes of hibited a most ingenious machine for washing the dishes of
her table, which abolished the drudgery of this disagreeable end of housekeeping, and enabled a child, with the help of two "lifts" from mother, to make a play of what would be the work of a servant.
Now, of course, not every cultivated school girl has the inventive faculty to do what this woman had accomplished. But think what she has done! She has made it possible for every mother in America to save an hour a day for study, or work, in the upper side of life. She has made it not only a respectable, but an artistic employment to wash table dishes. She has made home duties and housekeeping more attractive to all her daughters, and taken one morestep toward the abolition of the drudgery that has so crushed out the lives of a thousand generations of women since the days of mother Eve. We doubt if any book, even a new novel by George Eliot, or a new picture, a new voice like the warble of
Gerster, or any spiendid thing that may be done by a woman in America, would go so deep, touch on higher realms of life, or more justly entitle that cultivated Christian lady to
the respect and admiration of the country.-Neow England the respect and admiration of the country.-Neo England Journal of Edtration.

Running Expenses of narrow Gange Railroads.

The St. Louis Republican gives the following estimate of the running expenses of a narrow gauge railroad, based on the performa
of June last:
The locomotives consume one ton of coal per seventy miles, one pint of oil for thirty-eight miles, one pound of tallow for seventy-seven miles of running. Engine repairs have cost 4 3-10 cents; the wages of engineers, firemen, and round-house men have cost $59-10$ cents; fuel has cost 114 mile run by the of 12 cents a mile; a result which is seldom equaled in the direction of economy.

Memoranda for Disinfecton of Yellow Fever.
The following rules have been published by the National
Board of Health: Board of Health:

1. It is prudent to assume that the essential cause of yel-, low fever is what may, for conciseness, be called a "germ," that is, something which is capable of growth and propagation outside the living human body; that this germ flourishes especially in decaying organic matter or filth, and that disinfection must have reference both to the germ and ot that in or on which it flourishes.
2: Disinfection, when used in a place not infected, for the purpose of rendering filth, or foul soils, waters, etc., incapable of propagating disease germs, is a poor substitute for cleanliness, and is mainly useful to make the process of cleansing odorless and harmless. The best disinfectants for this purpose are sulphate of iron, carbolic acid, fresh quicklime, fresh charcoal powder, chloride of zinc, chloride of aluminum, and permanganate of potash.
2. The two great difficulties in destroying the vitality of the germ of yellow fever are, first, to bring the disinfecting agent into actual contact with the germ; and, second, to avoid inuring or destroying other things which should be preserved.
3. When the germ of yrllow freer is dry, or partially dried, no gaseous disinffectant can be relied on to destroy it. It must either be moistened or subjected to a dry heat of not less than $250^{\circ} \mathrm{F}$., to obtain security.
4. In disinfecting or destroying infected clothing, bedding, or movable articles, move them as little as possible white dry. Before disturbing them have them thoroughly moistened, either with a chemical disinfecting solution or with boiling water, in order to prevent the diffusion of dried germs in he air in the form of dust.
5. The best method of disinfecting rooms, buildinure, ships, etc., is still doubtful, owing to the difficulty of destroying the vitality of dried germs.
The Board proposes to have this subject carefully investigated, and in the meantime advises thorough scrubbing and moist cleansing, to be followed by the fumes of burning sulphur, at the rate of 18 ounces per 1,000 cubic feet of space to be disinfected.
The sulphur should be broken in small pieces, burned over vessels containing water or sand, which vessels should be distributed in the closed space to be disinfected at the rate of one to each 100 square feet of area of floor.
6. No patented compound known to the Board is superior, as a disinfectant, to the agents above mentioned, and none is so cheap. Some of these patent disinfectants are good deodorants, but the removal of an unpleasant odor is no prooj that true disinfection hasbeen accomplished.
7. In districts where yellow fever prevailed last year the following precautionary measures should be taken:
(a) Textile fabrics of every description which were exposed o yellow fever infection during the year 1878, and which have remained packed or boxed in a closed space since such exposure, should not be opened or unrolled, but should either be burned or placed in boiling water for half an hour or more, or in suitable heated ovens, or disinfected, according to the nature and value of the individual article or articles. (b) Every house or room in which cases of yellow fever occurred in the year 1878, and since that time have remained noccupied, should not be opened for occupation until they have been thoroughly cleansed and disinfected, by persons acclimated to yellow fever
(c) Every privy, vault, underground water cistern, dry well, or closed cellar, connected with a house in which yellow fever existed last year, and which may not have been opened since that date, should not be reopened, but if possible should be covered with several feet of earth.
(d) Every suspicious case of sickness should be at once solated, and every possible precaution taken to prevent infection, by providing attendants who have had the disease, and thorough disinfection of all discharges from the sick. If the disease prove to be yellow fever, all articles of cloth ing and bedding used about the sick should be burned, the house should be vacated, and every room tightly closed and fumigated with buraing sulphur.

A New Way to Treat Diphtheria

Quite a discovery in the treatment of diphtheria has been made here. A young man, whose arm had been amputated, was attacked by diphtheria before healing took place, and nstead of the matter incident to that disease being deposited in the throat, the greater portion appeared on the wounded arn, and the diphtheria was very light and easily managed. Dr. Davis, of Mankato, profited by this, and in his next case of diphtheria blistered his patient's chest, and on this bliseasy part the chief deposits appeared. This was also an easy case of the disease. The theory of Dr. Davis is that diphtheria usually appears in the throat because of the thinness of the lining of the throat. Hence, when the blister breaks the skin upon any other part of the body, the disease appears there.-Minnesota letter to the Salem (Mass.) Gazette.

American Institute Exhibition.

This exhibition opens on the 17th day of September, by which date all exhibitors should be in position. The incompleteness of all exhibitions is the cause of general and well deserved complaint, yet we hope our frequent notices may have at least the effect of having this exhibition in good shape on opening day. Any parties intending to exhibit should apply at once, and address all communications to
General Superintendent, American Institute, New York city.

