
or the Scientific American. No. 9.
According to the conditions of this law, all f the compounds of an aggregated serics hould also possess sizalar chemical proper ties The following examples serve to show the close similarity of the compounds of the aggregated series just given, and also the gra dual increase and decrease of properties as the series increase. We will commence by introducing their oxacids.
Nitric Acid, $2 \mathrm{R}+50+\mathrm{HO}$. specific gravity 521 , boiling point 187°. liquid.
Chloric Acid, $5 \mathrm{R}+50+\mathrm{HO}$. oily liquid.
Bromic Acid, $11 R+50 \div$ HO. ropy liqquid
Iodic Acid, $18 \mathrm{R}+50+\mathrm{HO}$ pasty mass.
The above compounds of the aggregated se ries unite with prerisely 5 atoms of oxygen each according to the conditions of the law Their specific gravities have not been calculated, neither have their boiling points, simply for the reason that when the altempt is made decomposition takes place. They all possess similar chemical properties, and even some of them, by their small amount, cannot be distinguished apart. The gradual increase of density may also be seen; thus nitric acid is a limpid fuid; as the series increase the oily liquid is formed, this 28 the series further increase assumes the syrupy condition, and finally end in producing a pasty mass, which partakes partly of the nature of a fluid and partly of a solid; thus showing a gradual increase of density, which must not be overlooked, as it is highly characteristic of the general conditions of the law which we have been explaining, namely, that all properties of an aggregated series or its compounds will as the series increase, either increase or decrease in a regular manner.
The nitrates, chlorates, bromates and iodate of Potash, must also according to the conditions of the law possess aimilar chemical properties. Upon examination this is found to be correct. In fact the tastes of the nitrate and chlorate of potash are completely similar. No bromate of potash is laid down in any ot the works to which I have access, and have there fore no knowledge of its properties. But the nitrates, chlorates and iodates are almost completely similar in their properties When heated they all give off oxygen gas, deflagrate when thrown upon burning coals, and when boiled with the solution of indigo decolorize it. The gradual increase or decrease of pro perties which they should pessess, may be strikingly shown to exist by the fact, that nitrate of putash is tolerably sisluble in water As we increase with the series, however, th solubility of the substances in water gradually decreases until we arrive at the iodate, which we find to be slightly soluble in water. Th bromate of potassa should therefore in point of solubility, be intermediate to the chlorate and iodate. The decrease of solubility may be owing to the 11 th condition of the law namely, all those substances situated the high est in the list generally have the least affinit for apy particular substance. Consequentl the compound of iodine being the highest in the list, should possess the least affinity for the water, which is exactly the case. The following example gives a list of their hydro gen acids.
p. Gr. Vapor.
$\begin{array}{lll}\text { Hydrochloric Acid, } \mathrm{Cl}+\mathrm{H} . & 1.269 & \text { gas } \\ \text { Hydrobromıc Acid, } \mathrm{Br}+\mathrm{H} . & 2731 & \text { gas }\end{array}$ Hydrobromic Acid, $\mathrm{Br}+\mathrm{H} . \quad 2731$ gas Hydroiodic Acid, I千H.
4.385 gas

Nitrogen does not appear to unite with hy drogen in theexact proportion to form an acid, at least no such acid exists uncombined, a nitrogen when it unites with hydrogen always unites in the proportion of one atom to three forming ammonia. We shall therefore hav to look to the three remaining acids for the similarity of chemical and other properties. The similarity is complete, they all emi dense white fumes upon exposure to a moist
atmosphere ; their odor is also similar. The compounds do not go high enough in the series to produce either a liquid or a solid, bu the density of hydriodic acid is greater tha either of the others. By compressing th above gaseous acids, the hydriodic will pro bably require less pressure to convert it int solid than either the hydrobromic or th hydrochloric acids. When they are compres sed, however, the hydrochloric proves to be liquid, while the hydrobromic and the hydrı odic acids are produced as ice like solids, thu showing the increase of density as the series increase. The union of the above gaseous cids with water produces liquid acids whose specific gravities increase with the series hus the specific gravity of the liquid hydro hloric acid is 1.211 , whilst that of the hydri dic acid is 1.700 . The liquid hydrobromic acid therefore probably possesses a specific ravity between the two
Bridgeport, Conn.

Leydoyen's Disinfecting Fiuid.

This fluid is the invention of M. Leydoyen a French chemist. Its efficiency has bee tested by a parliamentary commission appointed for the purpose. They tried its eff'ects on ubstances in a state of decomposition; on substances about to undergo decomposition on night-soil ; on the impure air of hospitals and of ill-ventilated places. In some of the experiments the fluid was poured over the substances ; in others it was mixed up inti mately with them; in others a cloth or towel, soaked in the liquid, was waved to and fro in he room containing the vitiated air. It was ascertained that the fluid is a solution of a metallic nitrate, and that its action depend on the decomposition of sulphuretted hydro gen. which is the most offensive of all pro ducts of animal decomposition. The com missioners reported generally that for remov ing the miasmata of sick rooms, the offensiv odor of drainage, \&c., the fluid was likely to be very valuable; and that so far as sewerag refuse is used as agricultural manure, it is mproved rather than deteriorated by admix ure with the fluid, in conseguence of sul phuretted hydrogen being removed, and ni
trate of ammonia formed. The fluid has bee clearly shown to be anti-bromic, that is cap able of removing smell, but it is not yet known whether it is really disinfecting, that is, capa be of removing infection.

Yellow Metal for Sheathing

This article is coming extensively into use to supply the place of copper for sheathing vessels. It has almost entirely superceded Eagland. It is an alloy of copper and zinc and is used for sheathing and for bolts and nail or vessels, for air pump rods, for steam en gines, \&c. Its value, compared with copper s about 15 per cent less, copper being 23 ents, and yellow metal 19. Its durability, compared with copper is almost 25 per cen greater. It is more malleable, ductile, and is less casily oxydized by the action of sea waer. Many vessels have worn it from three to ve years, it still remaining in use, whil opper will only last from two to three years, making at least a saving of 33 per cent in fa or of this article.

Myriads of Animalcules.

In the Arctic seas, where the water is pure ransparent ultramarine color, parts of twenty or thirly square miles, 1,500 feet deep, are green and turbid, from the vast numbers of minute animacules. Captain Scoresby calcu lated it would require 80,000 persons, work ug unceasingly from the creation of man t he present day, to count the number of insects contained in two miles of green water What, then, must be the amount of animal ife in the Polar regions, where one fourth of he Greenland sea, for 10 degrees of latitude consists of that water

Phosphorescence ofthe Sea
Dr. Peeppig, in his voyage to Chili, sailed hrough about 168 English square miles of his phenomenon; and if we add that the infusoria causing it may have been equally distributed in the upper stratum of water the depth of six fuet, we must confess that their numbers infinitely surpass the concep tion of the human understanding

History of the Rotary Engine
Prepared expressly for the Scientifie Ame rican.
Fig. 16.

metalic spring piston.
To Mr. Cartwright belongs the credit of having invented the first metalic packing which with some modification is now in gene ral use.
Mr. Cartwright's consists of two rings of brass of thefullsize of the cylinder, which are cut into segments, as shewn at $L L L$, and laid one over the other, so as to break j int. The joints, therefore, in the under ring are shewn by the dotted lines in the figure, and being thus disposed the two rings are secured in heir places by a top and bottom plate, to which the piston rod is fixed. The segments re pushed against the cylinder by steel prings as shewn at N .
In a late work on the high pressure engine by a German Engineer named Ernest Alban we perceive the metalic packing denounced and the old gasket vindicated and recommended. The objection urged against the metal c packing, is the difficulty of a true fit This objection will no doubt make some of our en gineers smile, who find no such difficulty, and they will be apt to consider that inferior work manship-not a correct principle has been the ground of Mr. Alban's attack upon metal ic packing.

Cartwright's Engine.-No. 2 This is a rotative engine of Cartwright and described in his specification of the engine in he last Scientific American.
The axis D, is fixed in an internal drum or ylinder, to the periphery of which are at ached the three pistons HHH , which en irely fill the channel formed between the in erior and exterior cylinders ; D D, are two valves, or flaps, which when shut into the ca vities, form a portion of the exterior cylin der, but when open (as drawn) serve as a but ment to receive the action of the steam which eing introduced between a valve and a pis ton, and stopped from escaping past them acta upoll any of the piston 3 H , which recede rom the pressure, and cause the drum and axis D to revolve. The flaps D relieve each ther, so that one of the pistons is passing one t the time the other is open, and receiving the force of the steam. Mr. Cartwright does not describe how these pistons and valves ar made, and being made, how they are to be sept tight. Two methods only are known, namely, hempen or metallic packing : the first would be soon destroyed by the holes in the sides of the exterior cylinders, formed for a communication with the boiler and con denser, by means of the pipes E E F, and metallic packing would here require too muc nicety and expense to be generally useful. But this is not all. The friction of the inte ior drum would far exceed that of the com mon engine, which it was intended to super sede, and the flaps D D, would be extremely

Liable to knock themselves to pieces by the frequent striking against the drum, as they are thrown forward by the external machinery.

Golden Yellow.

M Guimet gives the following receipt for making a yellow color, of a golden tint, much more intense than the well known Naples yellow. Take of antinomiate of potass (carefully washed) one part, and of minium two parts, grind and mix them well intoa paste then dry the paste and reduce it to a powder ; and lastly, expose the powder for four or five hours to a red heat, taking care not to rais the temperature so high as to disengage the oxygen from the lead and antimony.

Air Guns

It is a curious fact, that although the air pump is a modern invention, yet the air gun, which is sonearlyallied to it in the construc ion of its valve and condensing syringe, should have existed long antecedent to it ; for it is recorded that an air gun was made for Henry V. by Marin of Liseau, in Normandy, as ear y as 1408 , and another was preserved in the armory at Scmetau, bearing the date of 1474. The air gun of the present day is, however, very different from that which was formerly made, and which discharged but one bullet fter a long and tedious process of condensa ion, while it now disc barges five or six with out any visible variation of force, and will act upon a dozen, though with less effect.

Changes in Solit Forms.

The gradual change of form of a body which till continues solid, is a problem at which many are confounded, because they cannot imtate the great experiments of nature. On a grand scale, it does not hold; but, in a smaller way, the barley sugar, which, in course oftime becomes crystaline and dull, presents an ex ample of change of structure without any al eration of its soliditv ; and copper coins, bu ried in the earth, become oxidized without osing their im pressions.

Mr. John Wilson Ingleheart, of South River Md., has sent to the editor of the Annapolis Republican, a pear that he pulled from a tree n his farm that had blossomed the second time this season and bore three pears.

SCIENTIFIC AMERICAN !

with upwards of

500 MECHANICAL ENGRAVINGS:
 the magazines aud papers which flood tne country hanics, having for its object the advancement of
che INTERESTS OF MECHANICS, MANUFAC. URERS and INVENTORS Each number is
ustrated with from five to TEN original ENGR VINGS OF NEW MECHANICAL INVENTIONE at Washiugton being illustrated in the Scientific American. It also contains 2 Weekly List of Amer can Patents; notices of the progress of all Meohan ions on the construction, management and use o ans on the construction, management and
It is is printed with clear tor tyoce on \&e. \&c It is printed with clear type on beautiful pa-
per, and ving adapted to binding, the subscriber
possessed, at the end of the year, of a larg orl
ume of 416 page s. illustrated with upwards of 500 ponsessed, at the end
ume of 46 pages. illustra
mechanical engraving
TERMS: Single subscription, \$2 a year in ad.
ance $\$ 1$ for six months. Those who wish to sub cribe hare only to enclose the amount 1 n a lette irected to
Publishers of the Scientific American,
128 Fulton street, New York. All Letters must be Post Paid.
INDUCEMENTS FOR CLUBBING.

Soathern and Western Money taken at par for sub
criptions. Post Office Stamps taken at their full scriptio
value. A SPLENDID PRESENT ! To any person whe will send us Three Subscri
 ion relative to yarent office busingse, including
cull directions for taking oat Patents, method of king the Specifications, Claims, Drawings, Models buying, selling, and trangfering Patent Rights, \&e. This is' a present of or EAT VALUE, yetmay be obtainwill take the trouble to get Three Subscribers tothe
Scientific American. It will be an easy matter to obtain two namas besides his own.
MUNN \& CO., Soientific Amerioan Offce, N. Y

