
or the Scientific American

## ew Cnemical Law.

 No. 6.As the compounds of the substances composing the aggregated series derived by the aggregation of CH , are more particularly known, I shall give a few more examples. The following example of double hydrates compri ses substances well known.
Pyroxilic Spirit 2 C H fo H O. specific gra vity ,796-boiling point $140^{\circ}$-fluid.
Common Alcohol $4 \mathrm{C} \mathrm{H} .+2 \mathrm{H} O$. sp. grav Common Alcohol 4 C Hert
, 796 -boil. pt. $173^{\circ}$ —fluid.
Oil of Potato Spirit $10 \mathrm{C} \mathrm{H} \cdot \mathrm{f}^{2} \mathrm{H}$ O. sp. grav ,812-boil. pt. $270^{\circ}$-fluid.
Ethal 32 C H. $\dagger 2$ H O. -solid
There is some difference in the experiments of chemists as to the true specific gravity of pyroxilic spirit and common alcohol; some considering the specific gravity of pyroxilic spirit as ,798, that is above common alcohol whilst others consider them both of the same specific gravity. If we consider the slight difference between the specific gravities of common alcohol and the oil of potato spirit, and then compare, the intervals of position which they occupy in the aggregated series, with the intervals of position which pyrox ilic spirit and common alcohol respectivel occupy, we are not surprised to think $t$ ia chemists could find but little difference be tween their specific gravities. By the nature of the law, the difference can be but a trifle say three or four parts at the mest; butthe specific gravity of common alcohol must be greater than that of pyroxilic spirit. As i is, the specific gravities are on the increase the same may be said of the boiling points which increase in the most regular manner The density of the substances also increase with the series, the first three being fluids and the fourth a solid The specific gravity and boiling point of Ethal should be greater than those of the oil of potato spirit. The simi larity of the chemical properties of the above substances, may also be noticed. Thus the similarity of the two former are complete, but as the substances increase in the series, it gradually changes, until we arrive at the chemical properties of Ethal, which is only different from the first two compounds, by reason of their distant situation in the series if we were in possession of a compound of the same aggregated series, and nearly similar to composition to Ethal, then it would possess similar chemical properties. The following example illustrates the composition of their single sulphurets.
Sulphuret of Methyle 2 C H. + S H. sp. grav. ,845-boil. pt $104^{\circ}$-fluid
Sulphuret of Ethyle $4 \mathrm{CH}+\mathrm{SH}$. boil. pt. $167^{\circ}$-fluid.
Sulphuret of Amyle $10 \mathrm{C} \mathrm{H.+S} \mathrm{H.-fluid}$. The specific gravities of the above substances have not been ascertained. The boiling points however agree with the conditions required. The following gives an example of their double sulphurets.
Doub. Sulph. Methyle 2 C H.+2 S H. boil. pt. $70^{\circ}$.
Doub. Sulph. Ethyle 4 C H. $\downarrow 2$ SH. sp. grav. ,842-boil. pt. $97^{\circ}$
Doub. Sulph. Amyle $10 \mathrm{CH}+2 \mathrm{SH}$.sp. grav. ,835-boil pt. $243^{\circ}$.
The boiling points in this example are also perfectly in accordance with the general requirements of the law. The specific gravities also appear to decrease, which is owing to the superior specific gravity of the sulphur, although it would be unsafe to assert it as a fact, on account of the slight difference between the specific gravities given, which might possibly be erroneously computed. The following gives an example of their chlorides. Chloride of Methyle $2 \mathrm{CH} .+\mathrm{Cl}$. H. gas. Chloride of Ethyle $4 \mathrm{CH}+\mathrm{Cl}$ H. sp. grav. ,874- boll. pt. 520-fluid.
Chloride of Amyle 10 C H. + Cl. H. boil. pt. $217^{\circ}$-fluid.

The boiling points of the above substances are also in perfect order; the chloride of methyle being a gas at common temperatures, must for reasons previously given, possess a boiling point tar below that of the chloride of ethyle. The other conditions are also fulfilled. The Bromides might properly be introduced here, but as their specific gravities, boiling points, \&c have not been calculated, I shall in their place introduce the Iodides, which gives an example agreeing perfectly with the conditions required.
Iodide of Methyle $2 \mathrm{CH}-\uparrow$ I H. sp.grav. 2,237-boil. pt. $112^{\circ}$. Iodide of Ethyle 4 C H. + I H. sp grav. 1,921 -boil. pt $161^{\circ}$.
Iodide of Amyle $10 \mathrm{CH}+\mathrm{IH}$.
In this case the specific gravities decrease as the series increase, and consequently the specific gravity of the iodide of amyle should be less than the specific gravity of the iodide of ethyle. The reason whs the specific gravities decrease, is owing to the superior specific gravity of the iodine, and is in accordance with the requirements of the law. The boiling points also increase, and there is no doubt but the boiling point of the iodide of amyle is greater than that of the iodide of thyle. All compounds of the aggregated seies given, must conform to the conditions required by the law, however complex their organisation.
S. N.

## Bridgeport, Conn

For the Scientific Ametican.
the Watery Particles in
Butter.
As the good of the agricultural portion of the community receives a considerable degree of your attention, I would ask if it ever occurred to you that the principle of evapo ration in vacuo could be applied to the separation of the watery matter from butter. Say take a box of suitable size made of wood, and lined with lead, the cover so fitted as to be air tight. The box must be of such length as to leave a space below the bottom of the pan that contains the butter for the introduc tion of a few lumps of quick lime. An ex haustiag syringe of simple construction will complete the machine. Butter by an opera tion such as thia, can be so completely drain definite time. The butter must be submitted to this operation before the addition of salt. A Subscriber.

## Artifical Mahogany.

The following method of giving any spe ies of wood of a close grain, the appearanc of mahogany in texture, density, and polish, is said to be practised in France, with such uccess that the best judges are incapable of distinguishing between the imitation and mahogany. The surface is first planed smooth, and the wood is then rubbed with a solution of nitrous acid. One ounce of dragon's blood is dissolved in nearly a pint of spirits of wine this and one-third of an ounce of carbonat of soda are then to be mixed together and filtered and the liquid in this thin state is to be laid on with a softbrush This process is to be repeated, and in a short interval afterwards the wood possesses the external appearance of mahogany. When the polish diminishes in brilliancy, it may be restored by the use of little cold drawn linseed oil.

## To obealn rresh blown Flowers

ter any day one chooses.
Choose some of the most perfect buds of latest in blowing and ready to open as ar off with a pair of scissors leaving to each, if possible, a piece of the stem about three in ches long; cover the end of the stem immedi ately with sealing wax: and when the buds are a little shrunk and wrinkled wrap each o them up separately in a piece of paper, per fectly clean and dry, and lock them up in dry box or drawer; and they will keep with out corrupting. In winter, or at any othe time, when you would have the flowers blow take the buds over night and cut off the end of the stem sealed with wax and put the buds into water wherein a little nitre or salt has been diffused and the next day you will have the pleasure of seeing the buds open and expand themselves and the flowers display their most lively colours and breathe their agreea
ble odors.

bramah and dickinson's rotaries.
This is another rotary embraced in the same patent as the one in the Scientific Ame rican of last. In this the sliders are in the periphery of the outer cylinder, and the water, steam, or other fluid, passes first into a smalier or inner cylinder, previous to its producing its effect in the channel or groove, as in the other example. A is the end ot a hol low smaller cylinder, placed in the centre of the larger cylinder B; the cylinder A is fixed on an axis or spindle $C$, as in the section. D D, is the channel or groove, formed between the outer surface of the cylinder $A$, and the inner surface of the cylinder $B$; to the cylinder $A$, is fixed a wing or fan $E$, of a projection sufficient to fill and act in the channeJ D D, as a piston, when $A$ is turned round by the axis or spindle C, so as to sweep the contents of the channel ; or, when any force is applied on one side of the surface, it will cause the cylinder A, and the axis or spindle C, to be turned round.. The cylinder A is left openat both ends, which pass through the plates $F F$, into the caps, and is fitted wa-er-tight in the junctions. In or about the middle of the cylinder $A$ is a chamber or partition, which divides the upper end from the lower; H H, are two sliders, stationed at opposite points in the periphery of the outer cylinder B, where there are cells projected as I I, to receive them and alrow well motion. These sliders are moved by the small spindles $K K$, passing through stuffing boxes in the usual way. They are ultimately opened and shut by half the rotation of the inner cylinder, by means of a wheel with an eccenric groove fixed on the axis, as L L . In this groove move two friction wheels, which being joined to the sliders by a connecting bar, the sliders A A, are opened and shut, by the xis $C$ turning round, so that one of the sliders $\mathrm{H} H$, is always close shut against the c.linder A, whilst the other is opening to let Fig. 12.

he wing or fan pass which is again shut be fore the passage slider begins its motion. The machine being thus complete, suppose that at a pipe O, a current of water, steam, or oth er fluid having force, was admitted into the cap whilst the machine is in its present position, it w ould immediately fall into the upper cavity of the cylinder A, and, passing through the aperture into the channel $D$, would press against the wing or fan E , on the one side, and against one of the sliders H H , on the other ; which slider not giving way would cause the wing or fan E to recede, and turn round the cylinder $A$ with its axis $C$; which axis, turaing the wheel with the groove L L would cauce the opposite slider to begin its motion; so that by the time the wing or fan $E$ reaches the station of the slider, it is totally drawn back into its cell, so as to permit the wing or fan E to pass without interruption and, by the continued motion of the machine.
the slider is again shut, before that slider on which the fluid is pressing begins to move so that, when the first slider, against which the water or fluid is still pressing, is opened, the pressure is then the same between the other stider and the wing or fan E ; and the spent fluid between the two sliders immediately rushes through the lower aperture into the bottom of the cylinder A, and is carried off in that way to the open air: thus a uni form rotation will be maintained as in the for mer example.
This engine is very simple and will make a very useful rotative machine. But no packing except metallic will answer in the grooves of the sliders. It however has a general defect of rotary engines viz., the difficulty of keeping it tight. This engine was published in the Repertory of Arts and made some figure in the world whenit was brought before the public -but oblivion in practice, has thrown a veil over its results.

## Preserving Eggs.

Some time ago, a Mr. Jayne, of Yorkshire in England, adopted the following process for preserving eggs, which he says kept them in a good condition two years. He obtained a patent for the mode in England, but that will not prevent any one in this country from using it if he likes.
Take one bushel of quick lime, thirty-two ounces of salt, eight ounces of cream tartar.Mix the salt together with as much water as will reduce the composition to a consisteney that an egg when put ruto it will swim. The eggs may now be put into it and be kept dow by a board with a gentle pressure upon it.

## New Cloaks.

A new cloak for the ladies has been inven ted in Paris, and is called the Mantua Marguerite. It is made of velvet, in the form of a shawl and is trimmed with three rows of black lace headed by a narrow silk braid.


HE BEST Meohanical Paper IN THE WORLD ! FOURTH YEAR OF THE

## SCIENTIFIC AMERICAN !

## with upwards of

500 MECHANICAL ENGRAVINGS:
$0 \rightarrow$ The Scientific American differs entirely from the magazines and papers which flood tne country chanics, having for its object the advancement of
the INTERESTS OF MECCHANICS, MANUFAC TURERS and INVENTORS Each, number is
lustrated with from five to TEN original ENGR
VINGS lustrated with from five to TEN original ENGRA
VINGS OF F NEW MECHANICALINVENTION
nearly all of the best inventions which are at Washington being illustrated in the Scientific
American. It also contains a Weekly List of Amer. American. It also contains a Weekly List of Amer-
incan Patents, notices of the progress of all Mechan-
ical and Scientific Improvements ; practical direc tions on the construction, management and use of
all kind of MACHINERY, TOOLS, \&C, Essas upon Mechanics, Chemistry, and Architectirte ; ac-
counts of Foreign Inventions; advice to Inventors ; counts of Foreign Inventions; advice to Inventors;
Rail Road Intelligence, together with a vast amount
of other interesting, valuable and useful information. of other interesting, valuable and useful in formation.
The SCIENTIFIC AMERICAN is the most popular journal of the kind ever published and of more im.
portance to the interests of MECHANICS and IN.
Vrent Dortance to the interests of MECHANICS and IN.
VENTORS than any thing the could posibly ob-
tain! To Farmers it is also particularl useful, ae
it will apprise them of all Agricultural Improve. tain! To Farmers it is also particularly useful, as
it will apprise them of all Agricultural Improve.
ments, instruct them in various mechanical trades,
scc. \&c. It is printed with cleartype on beautiful
papren sc. Sc. It is printed with clear type on beautiful
paper, and leing adapted to binding, the subscriber
is possessed, at the end of the year, of a large volis possessed, at the end of the year, of a large vol-
ume of 416 pages. illustrated with upwards of 600 mechanical engravings.
TERMS : Single subscription, $\$ 2$ a year in ad.
vance; $\$ 1$ for six months. Those who wish to subvance; \$1 for six months. Those who wish to sub
scribe have only to enclose the amount 1 an letter
directed to Publishers of the Scientific America,
128 E Fulton street, New York. All Letters must be Post Paid.
INDUCEMENTS FOR CLUBBING

Southern and Western Money taken at par for subscriptions. Post Office Stamps taken at the
value.
$\qquad$ bers, we will present a copy of the pate law in or
THE UNIED $\operatorname{sTATES}$, together with all the informaion relative to PATENT OPFICE BU INEEs, including
 king the Specifications, Claims, Drawings, Models,
buying, selling, and tranfering Patent Rights, \&c.
This is a aresent of orest valu e, yet may be obtain. This is a present of GREAT VALUE, yet may be obtain-
ed for nothing, by the reader ofthisprospectur, if he
will take. the trouble to get Three Subscribers to the Scientific American. It It will bee an easy matter to
obtain two names besides his own. MUNN \& CO., ScientificAmerioan Office, N. Y

