Sciettifix Amertan.

New $\mathfrak{I n v c u t i o n s . ~}$

The Ballance Dry Dock.
The Ballance Dry Dock, at the foot of Pine treet, as now constructed, can receive and raise, in less than an hour, ships of the largest class, with their cargoes on board, or ships of the line, with their armaments; and this without danger of straining. The strength of the dock is secured by enormous kelsons and trusses of oak, fastened and connected as firmly as rron bolts and the most scientific principles of mechanics can join them, and forming a structure which, for beauty and strength, cannot be surpassed in this department of building. It is capable of susfaining from 2,000 to 3,000 tons weight. The lifting power is remarkable: the dock being one structure, and not divided into sections, the lifting is a single process, and the main power being thrown into the centre by a series of chambers in the bottom, which are filled with water when tne dock is submerged, and pumped out when a vessel is to be raised; a great advantage is thus gained, and one which secures the suc cess and usefulness of this and similar docks.

Flextbic Ivory.

It has been long known that in subjecting bones to the action of hydrochloric acid, the phosphate of lime, which forms one of their component parts, is extracted. Bones preserved in this manner retain their original form, and acquire great flexibility. It is by his process that M. Charriere, a skılfu maker of surgical instruments, in Paris, soft ens the ivory of which he makes use to ma nufacture flexible tubes, probes, and other in struments. Thesepieces, after receiving the required form and polish, are steeped either entirely or partially in acid diluted with waer, where they remain as long as required. The ivory, having undergone this preparation becomes su pple, flexible, elastic, and assumes rather a yellowish color. In the course of drying it again grows hard and inflexible; but the flexibility of the ivory may be re stored by wetting, either by surrounding it with a piece of wet linen, or by placing sponge in the cavities of the pieces. Some pieces of ivory bave been kept in a flexible tate in the acidulated water for eight days; hey were neither changed nor injured, nor too much softened ; they had acquired no taste or any disagreeable smell.

Tupper's Hay and straw Cutter.
Two weeks ago, among the list of patents granted, there was one, for improvements on Straw Cutters to Mr. Lewis Tupper of Au burn, in this State. Among the great numer of machines of this nature patented, and in common use, it may be well supposed, that any machine for which a patent would be granted, must poesess some really good and useful feature. This is paticularly the case with this machine. It works with great ease; its parts are very simple, and it is therefore easily kept in order, and cheaply constructed easily kept in order, and cheaply constructed patronage, which it deserves.

American Lithographic Stone.

A quarry of fine lithographic stone has been discovered by Dr. H. McKenzie at Talladega, in Alabama. The lithographic stone heretoore employed in this country, have all been imported from Germany. The A merican stone s stated to be as good as the foreign. This will be a great benefit to the art, as it will no doubt be obtained much cheaper at home than to import it.
Colman's work says, "Private carriages in England have reached a wonderful perfection in beauty and commodiousness. It is a pleasure to stand in Hyde Park and see them pass, almost infinite in variety, yet all so excellent. The real English carriage is strikingly plain but of a finish which fascinates the ege a once."

Horce Power

Mr. Albert Sheek, of Mocksville, in Davies County, Va., has made an important improve ment in Horse Power, for which he has taken measures to secure a patent. The improve ment consists in regulating the power applied to machinery in connection with the master wheel of the horse power. The improvement therefore provides a governor for the powe applied, to suit variations of the amount o power required to operate the connected ma chinery.

Cure of Bald Heads.

We mentioned some time since that $\mathbf{M r}$ Wise, of Richmond, has invented an ointment that causes a thick suit of hair to spring out from the most inveterate bald head, in the course of a few days. The Richmond Republican says, in reply to the numerous inquiries made to them by letters on the subject, that it is Mr. Wise's intention to visit the north in a short time, and administer it to all applicants in person.

This is an apparatus for measuring the quantity of water discharged from a fountain in a given time-something very much desired sometimes. A is the pipe to suppls the cisiern B. The atop cank of A is-rogulate號 with a hole cut in the middle.) The weir must be raised or lowered by a handle or screw, till a stream of a suitable depth passe over it. The spindle, F, and the cone G ar worked by a clock all the time the water is unning over the weir, and motion is commu nicated to the counter by the spindle I, whic has a cone H fixed on it. The guide pulley N , and another guide pulley, which is placed on the opposice side of the cone H , are fasten ed by brackets to the top part of the weir E. A strap works upon the guide pulleys now poken of, and passes between the cones G and H , and as these cones are pressed to wards each other by a spring, the cone G will, by its action on the strap, communicate notion to the cone H . The motion of the cone G being uniform, the spead of the cone will not be so great when the strap is working near the top end of the cones, as it will be when the position of the strap is lowr , and as the weir and strap, from the way in which they are connected, must rise or all together, the quantity of water running over the weir will be less when the cone H and spindle I are revolving at a slow rate than it will be when the motion of these parts is quick. From this it is clear that the counters will point out the quantity of water expended, if the cones have such a form or aper as will cause the speed of the spindle , always to be in exact proportion to the quantity of water expended, whatever may be he position in the wier. The shape of the cones may reacily be calculated; and any form may be given to them, provided th motion of the strap, up or down, in relatio to that of the weir, be made to correspond.

Arkansan Marble.

The Little Rock (Ark.) Democrat says tha ine black marble has been discovered near the head of steamboat navigation on White river it appe
atream.

New Magnetic Perpetualiliotionmachineo Mr. Silas A. Snyder, of Clarendon, Orleans Co. N.' Y., has discovered a nêw way of ma king permanent magnets to give motion to large bodies in so simple a manner that it is considered by many that it will be applicable to produce permanent mechanical movements He has taken measures to securt it by patent, and he is expected to exhibit his invention in this city either during the latter part of this fall, or during the winter. The magnet is formed of an entirely different shape from any ever employed betore, and the body to which motion is communicated by its attraction centre.

The Ammoniacal Blister of Goudret is thus prepared-Lard 32 parts, oil of almonds 2 parts; melt them together with a gentle heat, pour into a wide-mouthed bottle, and then add 17 parts of solution of ammonia, mixed by continued agitation. This will produce vesication in ten minutes.

This is a portable filter, designed by Mr Louis Bonnet, of the Courier des Etas Unis, No 12 Park Place, of this city, who will dispose of the same on favorable terms to those who esire to purchase. At the first glance the object and utility of this filter will not be un derstood, but this we will elucidate after describing the parts. A is a bag of vulcanized India rubber, or gutta percha; B is a tube that communicates with a vessel, C , which is made of porous earthenware; D is a faucet to draw the water from the vessel C. Fis a small plu o admit air into the filtered water. Two or hree thicknesses of canton flannel are placed in the tube, B, through which the water passs from A to C, to separate the impurities in he water; E is a strap to carry the apparatu and by which to hang it upon a peg, \&c.
It is well known that the natives of the eas keep all their water in porous vessels, an rom them draw cooling draughts; when, if he water was kept in glazed or metal vessels, it would become quite tepid. 'i he Arab, when crossing the desert, draws a cool cup from his orous goat skin bucket, even when travel ling under the burning rays of an oriental sun his is accounted for on the principle of rapi vaporation-the water inside radiating the heat so rapidly in the currents created by eva porating through the many pores of the vessel, hat the water within is always found to be some degrees below the heat of the atmos phere. By putting a porous vessel containing water in the sun, (the hotter the better), and keeping the vessel sprinkled continually with ther water, that contained within the vesse will be reduced almost to freezing temperaure. A mouse has been frozen to death by prinkling it with ether, upon the principle of rapid evaporation. Every person knows how cool the skin feels after rubbing it with alcohol. By filling tbe bag A with water and banging it in a current of air in any part of a dwelling, we can not only have our water filered but cooled, in the warmest weather without the expense and artificial aid of ice as the vessel \mathbf{C} acte the part of a refrigerator
to thè water contafned within'it. This appa atus, therefore, has two qualities, in the pro duction of certain results, and another in the smplicity, converience and cheapness of it Th
The evaporation of the water through the pores of C , cools the water a great deal, alhough it mas not be placed in a current of ar. These porous vessels, called "Alcarraa," are. much used in Spain and other warm ountries. A French chemist, "Darcet," ound the best to be composed of 5 part calca ous and 8 parts clayish earths, and a smal portion of salt-they may, however, be made of other materials.

Now Locomotiver for Cpmmon Roade،
The London Mining Journal gives a flatter ing account of a new locomotive for common roads, constructed on the high pressure con densing principle, from which it says if there is no error or miscalculation in the results, we must almost believe the system success fully matured. This engine, we are informed is of nine-horse power; while in proportion it is the lightest ever made, weighing altogether about 30 cwt ., consequently not much heavier than an omnibus. The boiler is on an entirely new construction, weighing only 8 cwt . There are two cylinders $41-2$ inches in diameter, and the great advantage in it light weight is obtained by the use of an entirely new condensing apparatus, without which our informant believes no locomotive can succeed on common roads, in consequence of its own weight. By this apparatus, which consists of a great many small tubes, arranged in various directions, the steam rill be comp? etely condensed to a vacum, by which, it is calculated that there is a gain of 28 lbs on an inch, at a speed of only fifteen miles per hour, above the power of the locomotive now in use, and the principle can be applied to every description of engine.
[The great thing about it is, that there is an error in the calculations. The best vacum will only gain 15 lbs . on the square inch.
Locomotives have been tried on common roads before in England, but although they run well enough, yet they were too expensive to keep wpr?
How to use Chlorotorm in surgery. The London Medical Gazette, in a favorable review of Prof. "Lizar's Surgery," having expressed a regret that be had published his work before chloroform was used, the Professor addressed a letter to the Editor, in which he says, that "s sincethe employment of ether, he had used it in lithotomy, amputation of the extremities, excision of the mamma, and in strictures of the urethra; and that although he commenced its use with prejudice, he had now become a thorough convert to its utility in almost every operation in surgery. When using chloform, the patient, he observes, should have an empty stomach, and for that reason operations should be performed before breakfast, as chloform always produces vomiting when the stomach is full, and the rejected luid is liable to enter the paralyzed glottis and produce suffocation. To this cause he apprehends the great proportion of fatal cases under its use may be ascribed. An experienced asistant is therefore required to administer the chloroform, and to do nothing else. He pust watch its effects, allowing fresh atmospheric air to enter the nostrils and mouth occasionaly, during its administration and influence, therwise the blood may become too greatly carbonized, and death ensue."

Muscatar Developement.

M. Emilies du Boys-Redmond, communi cated through Humboldt, to the Academy of cience, at Paris, a description of the follow ing experiment, that establishes the fact of he electrical influence of the human system : Fix to the two extremities of a sensitive gal. ranometre, two strips of platinum : plunge hese slips in tumblers of salt water, and then introduce into the tumblers the corresponding ingers of each hand, let them remain until the luctuations of the needle cease. Then conract the muscle of one arm by an effort of he will, and a deviation of the needle will instantly indicate a contrary current of elecricity in that arm. The amouut of deviation depends on the muscular development.

