

Par the Scientific America
New Chemical Law
No. 5
This chemical law also applies to the com pounds of an aggregated series with other substances, full as well as to the aggregated series alone, as may be seen by inspecting the properties of the following compounds. Acarding to the condition required by the law, each substance comprised in an aggregated series must unite with an equal number of atoms of oxygen, to form an acid $;$ and this it may be seen is the case with the aggregated series last given. All equi-carbohydrogens, in uni ting with oxygen to form a definite acid, unite with precisely four atoms.
The following example shows a series of acids, formed by the union of oxygen with each substance comprised in the aggregate last given; and also acids which are compounds of equi-carbohydrogens, not given in the previous example because not recorded. There is no doubt, however, that if their acids were distilled in contact with lime, a carbohydrogen might be produced, the same as is he case with the generality of acids.
S. Gr. B. Pt.

Formic Acid $2 \mathrm{CH}+04$. $1,235212^{\circ}$ Auid Acetic Acid 4 C H. +04 . $1,063240^{\circ}$ fluid. Butyric Acid 8 C H.f-O4. ,976 318° flaid. alerianic Acid $10 \mathrm{CH}+04$, ,944 347° fluidCocinic Acid $87 \mathrm{CH}+04$ yristic Acid $28 \mathrm{CH}+04$ Palmetic Acid $32 \mathrm{CH} .+\mathrm{H}^{2}$
Margaric Acid 34 C H.+O4 omplete in every particular. It may be recol lected, that in speaking of the properties of the compounds of an aggregated series, it was mentioned that their specific gravities might ncrease or decrease, acco:ding to the nature and specific gravity of the substance uniting In this case it may be seen that the spe cific gravitics decrease, as the series increase in a regular manner. The specific gravities of the four remaining substances should be less than the four whose specific gravities are iven. The boiling points also inorease with he series in a regular manner, and therefore by the law, the boiling points of the four remaining substances should also be on the increase, and greater than those of the first four whose boiling points are given. It may also e noticed that there is a gradual increase of density. Thus Formic acid the firstsubstance in the series, is a fluid, but as the series in crease, the substances produced exhibit the properties of a solid. Thus while the firs four substances are fluids, the remaining four are solids, which is in contormity with the conditions required by the law. The chemi cal properties of those substances situate nearest to each other are strikingly similar which also agrees perfectly with the conditions required; thus it is well known that the Formic and Acetic acids closely resembl each other; and although the chemical proper ties of the substances composing the series, gradually differ as the series increase, yet when any two are taken, closely situated to eac other by their comparition, it will be found that hey possess similar chemical properties This similarity of chemical properties is high ly characteristic of either an aggregated se ries or its compounds, although it gradually differs as the series increase.

The following is an example of the com pounds of the foregoing aggregated serie with one atom of water, and are generally known as Ethers. All of the substances com prised in that series do not unite with water at least they have not been discovered. Th reason that they do not all unite with water may be attributed to the 11th article or con dition of the properties of an aggregated se ries, which says that all those substances s tuated the highest in the list, generally hate the least affinity for any particular substance,
consequently those situated the lowest in the
list have a greater affinity for water than those above them. If any Ethers of the high er aggregated compounds are in future disco vered, they can be easily classified.
S. Gr. B Pt.

Oxide of Methyle $2 \mathrm{CH}+\mathrm{HO}$.
Oxide of Ethyle $4 \mathrm{CH} . \nmid \mathrm{HO} 0,72576^{\circ}$ fluid Oxide of Amyle, $10 \mathrm{C} A+\mathrm{H} O$. (unknown to exist.)

In this instance it may be seen that the boiling points also increase with the series, as the first substance being a gas at common temperatures, must already be considered by the laws of chemistry as in a boiling condition.Now the second substance boils at 76° and there shows that the boiling points increase with the series. We can tell nothing by the specrfic gravity, as only the specific gravity of Oxide of Ethyle is given. The property of the density increasing with the series is perfect, as may be seen upon examination.
S. N.

Bridgeport, Conn.
History of the Rotary Engine
Prepared expressly for the Scientific Ame ican.
bramah's rotary engine.
This is one of the inventive Bramah's rotary engines, he having obtained three patents in 1790. The patent was taken out jointly with Mr. Thomas Dickinson

Fig. 9.

Fig. 9 represents the plan of one of these engines, a nd fig. 10 a section. A A and B B, show the ends of two short cylinders or rings different diameters, one placed in the centre of the other. C is the channel or circular groove, formed between the two circles. The ends of the cylinder or ring B B, are shut up by two flat plates D D, as shown in Fig. 10 ; to these plates is joined an axis or spindle E E, which axis or spincle passes through the ends or caps $F F$, whichencloses the ends of the cyilnder or ring A A, and which is made air-tight by means of a stuffing box in the usual way. By this axis or spindle the cylinder or ring $B \quad B$, may be turned round from without, any external power being applied for that purpose; or this axis or spindle may be applied to give motion to any other machine, when the cylinder B B, is turned ound by any power or force acting from within. In the cylinder ur ring B B, are fixed wo sliders, G G, crossing each other at right angles in the centre where they are notched or half spliced, sofar asto allow them to slide backwards as much, at least, as the diameter of the channel or groove C. The length of ach of these sliders is equal to the diameter of the cylinder or ring $B B$, and one diameter of the channel orgroove C; so that the points which perforate the extremity of the cylinder or ring B B, when they are pushed out into he channel or groove, may entirely fill the same, similar to a piston working in a common cylinder ; in order that, when the cylin$\operatorname{der} B B$, is turned round, the channel or groove may be by that part of the slider totaly swept or emptied. In this channel or groove fixed the partition H , which fills the same in that part, and, by its being fitted against the periphery of the wheel $B B$, prevents the passage of any fluid that way round the channel, when the caps or ends are screwed down. On each side of the partition H, is fixed a rib II, or piece of such a shape as to perfectly fit the circle B B, one quarter of its circumfeence, between the doted lines 12 ; and the emaining part is continued in a shape inclin. ing to theacircle of the greater cylinder A A, with which it forms an easy juncture at the quartile pointe, 3 4. When the cylinders B
, with the sliders; are turned round in eithe direction, the inclined parts of the ribs I I,

orce the opposite end of the sliders G G successively into their channel or groove where they are obliged to remain during one quarter of the revolution, being kept in that po sition by the circular part of the rib between 1 and 2. K M, are two pipes of any required diameter, which may be inserted into the channel or groove, inany direction the situatio of the machine may require, between th points H 3 and H 4 . The sliders are rendered sufficiently tight at their junction with the channel, by means of oakum or any othe fiexible material, being forced into the cavi ties made for that purpose at the parts $\mathrm{L} L \mathrm{~L}$; and also the partition H in the same way. The cylinder or ring B B, being thus armed with the sliders, and the caps or ends, F F, screwed on by the flanches at A A, the machine is complete and ready for action. Now, supposing that through the pipe K a jet of water, steam or any other fluid, from any considerable height is admitted into the channel or groove C , it would immediately force against the slider projected in the channel as at N , and als against the fixed partition H ; which parti tion, preventing its passage that way to the evacuation pipe M, where the spent water is discharged, the next slider in succession has passed or covered the junction of the ascend ing pipe K, so that each successive slider re ceives the pressure betore it is done acting on the former; by this means an uniform rotatio is maintained in the cylinder B B, and its ve locity will be equal to the descent of the wa ter in the pipe K , and its force equal to the specific gravity of the same. Thus this ma chine may be worked by steam, condensed air, or wind, or any other elastic or gravita. tiag fuid,for the purpose of working mills, or any other kind of machine or engine whatso ever, they being properly connected with the axis or spindle E E; and when any power is externally applied to the said axis, which may turn the machine in any direction, it becomes a complete pump; possessing all the proper ties of every other sort of hydraulic engine whatsoever, by applying the pipes K and M accordingly; and it has also much advantage over every other kind of pump, as the flui pumped is kept in constant motion both in the suction and ascending pipes. This machine may be fix

Fire Cements.

1. For fünaces, crucibles, \&cc.-Fire-clay and brickdust or, fire-clay and burned clay, (brcken crucibles) kneaded well together with water, and spread in layers on joints, and thoroughly arr dried resistsheat without crack ing. It may also be employed for coating glass retorts by spreading it as a stiff paste or thinning it with water and spreading with a brush. A little hair added to it, gives greater tenacity. 2. Clay and brickdust mixed with water and 1-10 part borax, gives difficuitly fusible cement ; clay and red lead may be used. To make it less fusible, commenclay and sand may be employed. 3. For iron vessels, \&c. .mix $50-8$ parts fine and pour,ded cast iron turnings with 2 parts powdered sal-ammoniac and 1 part flowers of sulphur intoa paste with water and apply it immediately ; it forms a chemical union, and hardens rapidly. According to some, the sulphur may be omitted. 4. Four parts iron filings or turnings and 3 parts of a mixture of common and burned clay are made into a paste with saltwater.

To stew Pumapking.

Cut a fine ripe pumpkin in half, and re move all the seedsand other contents of the entre. Slice it, and pare the slices. Put hem into a pot with a very little water, and stew them slowly till soft enough all through to mash easily. Then put the stewed pumpkin into a sieve or cullender, and mash it omoothly with the back of a flat ladle, let ting all the moisture drain out, and leaving the pumpkin dry as possible. Put it away to cool and it will be ready for mush, bread pud ding, or any similar purpose. To be eaten with meat as a vegetable, season it with pep. per, adding some fresh butter mashed among it and send it to the table warm.

Mock Cream.

Beat three eggs well : then add to them hree heaping teasp.oonfuls of fine flour; beat hem well together:; then stir them into a pint and a half of boiling milk; add to it a saltspoonfull of salt and loaf sugar to taste; flavor with essence of lemon, stir it while boiling ; when it is perfectly smooth it is done
Line pie tartlet pans with rich puff paste, and bake them in a quick oven; when done fill them with mock cream ; strew powdered sugar over the brown; when a fine color, they are done. These will be found to be altogether superior to custard pies.

How to make Leeches Bite.
Dr. Remnes, of Bergerac, advises that the eeches should be put for an instant into weak wine-and-water, the better for being a little warm, just before applying them ; no soone are they laid on the part than even the most sluggish pierce the skin instantly ; those even that had been for a short time before used mmediately attach themselves. In the Hote Dieu, the practice is to wring a linen cloth out of undiluted wine, and wrap the leeches in it for a few moments, which is found to have the desired effect

 H E B E S T Mechanical Paper IN THE WORLD! fourth tear of the
 SCIENTIFIC AMERICAN !

 with upwards of500 MECHANICAL ENGRAVINGS: The The Scientific American differs entirely ft the magazines and papers which fiood the country, chanics, having for its object the advancement of
the INTERESTS OF MHLCHANICS, MANUFAC.
TURERS TURERS and INVENTORS Each, number is il VINGS OF NEW MECHANICAL INVENTINA nearly all of the best inventions which are patented
at Washirgton being illustrated in the Scientific
 ical and Scientific Improvements; practical direc
ical
tions on the constrution, management and use of
all all kinds of MAACHINERRY, TOOLS, \&C. ; Essaya
upon Mechanics, Chemistry and Architecture ; ac upon Mechanics, Chemistry and Architecture; ac
counts of Foreign Inventions; advice to Inventora
Rail Road Intelingence, together with a vast amount of other interesting, yaluable and wetul a vast amount
The SCIENTFIC AMER1CAN is the most The SCIENTIFIC AMERICAN is the most popular journal of the kind ever published, and of more im-
portance to the interests of MECHANICS and IN. YENTORS than any thing they could possibly ob.
tain! To Farmers it is also particularly useful, am ments, instruct them in various mechanical trades,
\&cc. \&c. It is printed with clear type on bea utifill
paper, and leing adapted to binding, the subscribe is possessed, at the end of the year, of a large orol
ume of 416 pages. illustrated with upwards of 50 mechanical engravings.
TERMS : Single subscription, \$2 a year in ad
vance; $\$ 1$ for six months. Those who wish to sub
scribe have vance; \$1 for six months. Those who wish to sul
scribe have only to enclose the amount Mn a letter
directed to
Publishers of the

Publishers of the Scientific American,
128 Fulton street, New York. All Letters must be Post Paid.
INDUCEMENTS FOR

Southern and Western Money taken at par for sub. value. A SPLENDID PRESENT!
To any person whe will send us Three Subscri bers, we will present a copy of the PATENT LAws or
THE UNITRD STATEs, together with all the informa tion relative to paTENT officc: business, including king the Specifications, Claims, Drawings, Models, baying, selling, and transfering Patent Rights, \&ec This is a present of GREAT VALUE, yet may be obtail.
od for nothing, by the reader of this prospectua, if he
will will take the trouble toget Three Subscribers to the
Scientific American. It will be an sagy mittor obta n two names besides his own.
MUNN \& CO., Scientific American Oflce, N. Y

