Nature and Relations of Water.

by prof. draper

No living thing can exist, except it con tains water as one of the leading constituent of the various parts of its system. To so great an extent does this go, that, in a chousand parts of human blood, nearly eight hundred are pure water. This distribution of organized beings all over the world is to a great extent, regulated by its abundance or scarcity. It seems as it the properties of this substance mark out the plan of animated nature. From man, at the head of all, to the meanest vegetable that can grow on a bare rock, through all the various orders and tribes, this ingredient is absolutely required. Insipid and inod orous in itself, it takes on the pecularities of all others bodies; assumes with readıness the sweetness of sugar, and the acidity of vinegar Distilled with flowers, or the aromatic parts of plants, it contracis from them their frag. rance, and with equal facility becomes the vehicle of odors the most offensive to our sense.
We talk about the use of water and imagine that nature furnishes us a perenial supply, we constantly forget that in this world nothing is ever annihilated. The liquid that we drink to-day has been drunk a thousand times be fore: the cluuds that obscure the sky have ob scured it again and again.
What then becomes of the immense quan tities of water, which, thus entering as a con stituent of the bodies of animals, gives to their various parts that flexibility which enables them to execute movements, or combining with vegetable structure fits them for carrying on their vital processes ? After the course of a tew years, all existing animals and vege tables entirely pass sway; their solid consti tuents disintegrate and take on other condi tions, and the waters, lost perhaps, for a time in the ground, at last escapesin the form of vapor into the arr. In that great and invisible receptacle, all traces of its ancient relations disappear ; it mingles with other vapor that are raised from the sed by the sun. From the bodies of living animals and planets, im mense quantities are hourly finding their way into the reservoir.
From the forests and meadows, and wherever vegetables are found, water is continu ally evaporating, and that to an extent fa surpassing what we might at first be led to suppose. In a single day, a sun-flower of moderate size, throws from its lea
other parts nearly 20 ounces weight.
In the republic of the universe there is stern equality, the breath of the rich inte mingles with the breath of the beggar.
A man of average size requires a half ton of water a year; when he has.reached the meridian of life, he has consumed nearly three hundred times his own weight of this liquid.
These statements might lead many to doubt whether the existing order of nature, as dependant on the waters of the sea, could for any length of time supply such a great consumptien.
The human family consists probably of a thousand millions of individuals; it would be a very moderate estimate to suppose, that the various animals, great and small, taken together, consume five times as much water as we do, and the vegetable world two hundred times as much as all the animal races. Under such an immense drain it becomes a cuinous question what provision nature has made to
meet the demand, and how long the waters of the sea, supposing none returned to them, could furnish a sure supply ?
The question involves the stability of existence of animated nature, and the world of organization; and no m an, save one whose mind is thoroughly imbued with an appreciation of the resources upon which the acts of the Creator are founded, would, I am sure, justly guess at the result. There exists in the sea, a supply which would meet this enormous demand for more than a quarter of a million of years.

Worcester Rallroad.
Thenumber of persons carried over the Warcester Railroad, a greater or less distance on the 4 th inst., is estimated at about 9000 , and the receipts were probably $\$ 3,500$. This was doing a good business.

The Specific Gravity of Liquids. As distilled water is always of the same weight at any given temperature, it is taken as the standard of comparison in comparing the weight of one body with another, excep in comparing the weights of the gases when it is sometimes of consequence to be able to ascertain the relative weight of a substance, and the methods of accomplishing this may be of service, first premising that it is usual o take the specific gravity at 60° Fah., to which temperature both the distilled wate and the substance to be weighed must be re duced, in order to prevent a troublesome cal culation. The substance to be weighed, i heavier than water is to be attacbed to one scale of a good balance by a piece of horse hair or fine wire, so as to hang beneath the pan or scale; the absolute weight of the sub tance is then ascertained very accurately; it is next inmmersed in distilled water at 60° and the beam being again brought into equilibrium he weight lost by the immersion $1 s$ ascertain ed. The absolute weight is then to be divi ded by the weight lost in the water, and the r sult gives the specific gravity.
Suppose a substance werghing 360 grs . to lose 60 grains by immersion in water, the specific gravity of such substance will be $=6$ for $360-60=6$
When the substance whose specific gravity is required, is lighter than water, it may b suspended with some heavier body, and hav ing determined the weight of the former in air, and of the latter in water, the two should be fastened together with fine thread, (not so closely as to exclude the water from between them) and weighed together in water, when it will be found that their aggregate weight will fall far short of that of the heavier bouly If now the weight of the lighter body be sub racted from that of the heavier body, and the remainder be added to the weight of the former, in air, the weight of a quanti'y of water equal in bulk with the lighter, will be obtained ; it the weight of the lighter body in air be divided by the last mentioned sum, the specific gravity of the lighter body will be ob. cific gred.
tain
Dr. Paris gives the following example: A piece of elm wood, having been varnished over to prevent its absorbing water, was ound to weigh 920 grains in air; a piece of leadtaken as ballast, was ascertained to weigh $911-7$ grains in water; the elm and lead were then tied together, and were found to weigh in water only 331.7 grains, being 580 grans less than the weight of the lead alone; therefore 580 were added to 920 , that is to the weight of the elm in air, which made up the sum of 1500 ; lastly, 920 were divided decimally by 1500 , ana the quotient 6133 gave the pecific gravity reqaired.
When the substance whose specific gravity s required, is soluble in water, some other fluid of known specific gravity must be used, which does not act upon it ; alcohol, oil of turpentine, or olive oil, may in most instances be used, or in some cases the substance may be coated with varnish. When the substance is in powder, it may be weighed in the specific gravity bottle.
For ascertaining the specific gravity of liquids, a thin bottle holding 1000 grains cf distilled water at the temperature of 60° is generally employed. If filled with any other liquid, the specific gravity is immediately as. certained; thus it would be found that the above bottle filled with mercury at 600 would be $13-500$, which theretore is the specific gravity of mercury; the same bottle would hold 1845 grains of sulphuric acid, 1420 of nitric acid, \&c., which numbers of course r
the specific gravity of these liquids.
Sometimes, in ascertaining the specific gravity of liquids a hydrometer is employed, but at cannot be used where great exactness is required. Where, however, a number of specific gravities are to be quickly determined, as in taking the specific gravities of spirituous liquors for the purpose of levying duties, or in certain processes of the arts, these instruments
from the facility of their application become indispensable.

When Louis Phillipe read Louis Napoleon's message he exclaimed, "I am avenged."

To Manufacture Attar or Eissential Oil This celebrated essence is obtained from roses by a simple distillation, conducted in the following mode: A quantity of fresh roses, (forty pounds for instance,) with their calyxes, (forty poundsfor instance,) with their calyxes,
but with their stems cut short, are put into a but with their stems cut short, are put into a
still with sixty pounds of water. The mass is well mixed with the hands, and a gentle fire is made under the still. When fumes befins to rise, the cap is put on, and the pipe fixed; the chinks are luted; cold water is put into the refrigeratory, and the receiver adapted. A moderatefire is continued; but when it begins to come oyer, is gradually lessened. The distillation is carried on till thirty pounds The distillation is carried on till thirty pounds
ot water are drawn off, which generally hapot water are drawn off, which generally hap-
pens in about four or five hours. This rose water is poured upon forty pounds more of roses, and from fifteen to twenty pounds are drawn off by the same process asbefore. This cohobated rose water is poured into pans of earthen ware, or tinned metal, and left exposed for a night; when the attar, or essence, will be found in the morning congealed and swim. ming on the surface of the water; it is to be carefully skimmed off, and poured into a vial. When a certain quantity has been thus obtained, the water and fecula are to be seperated from the clear essence. The first is easily done, as the essence congeals with a slight cold, when the water may be foured from it. The fecula may then be made to subside, by keeping the essence fluid by heat. They are as highly perfumed as the essence. The ros? water, after all the essense has been skimmed from it, is to be employed in future operations, instead of common water
The very small quantity of essence obtainable from the roses in India, has caused various additions to be made in the distillation, particularly sandal wood; but this adulteration 18 discoverable by the flavour of the sandal, and the fluidity of the oil in common cold. In Cashemire a sweet-scented grass is used as an addition, which does not injure the perfume, but impedes its congelation. The proportion of pure essence yielded by the rose is very variable, from differences in the seasons, and in the manner of conducting the process. In India, theee drachms from one hundred pounds of leaves is a large proportion. From a large field there was procured only at the rate of two trachms to the hundred pounds. The color of the attar is no criterion of its quality. It was obtained green, yellow, and reddish, from roses of the same ground, but collected on different days. The calyxes do not impair the quality of the attar, nor give it a green color.

The Use of Camels.
It is a fact well known to Eastern travellers and especially to those who have visited the mountainous regions of Syria, Palestine, and the Peninsula of Sinai, that the camel is as serviceable on rough mountain paths as in the moving sand of the desert On this account the modern Arab never troubles himself with road-making. He will not even remove a stone from the middle of his path which leads to his watering-place. The dry bed of a torrent is his high road cross the mountains, and foot prints are his guides through the plains. The tough soles of the camel's feet are affected neither by the burning sand nor by the loose sharp-edged stones strewed over that volcanic mountain range which extends from the Taurus to the Indian Ocean.

Any young camel may be trained for racing and for war, although the mountain breeds are best adapted for these purposes. The ca mel drinks only every second day; but it may be deprived of water for three days together, without any effect upon its health and vigor. It will perform an eight day's journey with no other food that three pounds of oil-cake and a few handfuls of grain. The dromedary carries sixty pounds' weight, in addition to its rider ; and it will outstrip the fleetest horse in a day's march. The "cavass" of the Egyptian Government travel on dromedaries from Cairo to Suez. a distance of ninety-three miles, in eight hours.

The common day's journey of caravans in Syria and Arabia is from 25 to 27 English miles, and the load of each camel is between four and five hundred weight. The Indian mail is conveyed from Suez to Cairo on ca-
mels in 18 hours. An Egyptian camel, mongst the tallest and strongest breeds, will carry, for a short distance-six hundred to ne thousand yards-from 10 to 20 cwts . There is no reason why the camel should not be as serviceable to man on the Prairies of Texas and the mountain region of Mexico, New Mexico, and California, as in the coresponding tracts of the Old World.
A writer in the National Intelligencer recommends a shipment of Camels from Morocco where good ones can be bought for about $\$ 30$, in order to test their qualities in the new world. We think that the idea is a good one and we would like to see a trial made, at any rate.

Lawyers, Mistakes.

The following article from Warren's Book of Lawyers, will give our readers some idea of the critical correctness which is required of lawyers in the drawing up of their papers. I myself recollect a case in which an attorney's clerk had omitted one single letter, in making the copy of a writ of capias ; to be served upon a defendant, who was clandestinely goung to Iudia, owing a widow a large some of money, which she had lent him. She accidentally, however, discovered what he was about, and iustantly communicated with her attonney, in such a state of alarm as may easily be conceived, He was an able and energetic practioner; and within a few hours' time, had got a capias against the di-honorable fugitive, and accompanied by an officer, succeeded in arrtsting the prisoner just as be was stepping into a steamboat to go to a ship, which was expected to sail from Gravesend on tbat day or the ensuing one. You may guess the consternation with which he found himself thus overtaken; but it scarcely equalled that with which the attorney received, early the next day, a rule to show cause why the defendant should not be discharged out of custodv, on entering a common appearance, on the ground of a variance between the writ and the copy served ; the discrepancy being between "Sheriffs of Loudon" in the one, and "Sheriff of London" in the other Eminent couisel were instantly instructed to show cause, and struggled desperately to disshow cause, and struggled desperately to dis-
charge the rule; but in vain. "It is better," charge the rule; but in vain. "It is better,"
said the tranquil Chief Justice Tindal, "to adbere to a general rule, capable of application to all cases, than to rase an argument on every impertection in a copy, as to the materiality or immateriality of the error, and thereby offer a prewium or carelessuess."
So the rule was made absolute-the defen dant discharged-he went to India. I sadly fear that he has never made his appearance here again, and that the widow lost all that he owed her, and which but for the wretched mistake, she would in all human probability have recovered. This happened nearly sixteen years ago, and coming under my personal notice, made a deep impression on my mind. I have a vivid recollection of the vexation and distress which it occasioned to the parties both lay and professional.

Only a year or two ago, a precisely simila decision was reiuctantly pronounced in the Court of Exchequer, in respect to a simila blunder, the very same word! (See Moore v. Magan, 16 M . and W. 95.) Now, can any thing be imagined more serious to the client and mortifying and injurious to the practioneer, than such miscarriages ? Counsel, also alas, san make desperate slips of this sort.That eminent conveyancer, the late Mr. Butler, accidently omitted a single word, " Gloucester," on drawing the wiil of Lord New burgh, which deprived a lady, the intended devisee, of estates worth $£_{14,000}^{(\$ 67,900)}$ a year.

To Cook Green Peas

Place in the bottom of your sauce-pan or boller, several of the outside leaves of head salad; put your peas in a dish with two ounces of butter in proportion to half a peck of peas-cover the pan or boiler closels and place it over the fire-in thirty minutes they will be ready for the table. They can either be seasoned in the pan, or after taken out.Water extracts nearly all the delicious flavor of the green pea.

The amount of California gold received at the Mint, Philadelphia, is aboul $\$ 2,000,000$.

