

NEW YORK, JUNE 23, 1849.

A New Motive Power.

The following is a condensed description of a new motive power taken from a letter by the author, Count De Wardinsky, published in the London Mising Journal. He says:-
This new motive power surpasses by far steam, or any other power actually known for, if we employ one cubic inch of the patented ingredient, we obtain from it no less a pressure than that of forty-six tons upon the square inch of surface. The gases evolved consist chietly of carbonic oxide and carbonic acid gas, both gases, permanently elastic, so that passing through cold air or water, they do not collapse, but will follow the piston to the utmost limit of its work. In using this ingredient we require neither fire or water; $;$ creates neither smoke nor any offensive effluvia, and, with the exception of a slight moisture, or pure vapor, it leaves no residum be Hind. Neither is there any compound in the gases which could corrode metals, as was pre sumed by Tschemacher, Porrett, Fordos, and Gelis, who seem to have copied from each other the supposition, "that there might be compounds of cyanogen in the gases of this in gredient, judging from the color of the flame when such gases were ignited," never telling us that the greatest portion was carbonic ox ide, which gas is well known to burn with a dark blue flame, the ingredient in question consists, in fact, of all kınds of vegetable fi bres, such as cotton, flax, hemp, tow, straw hay, paper, \&c., rendered explosive by thei being dipped for 14 or 15 minutes in nitric acid, strengthened by an admixture of an equa) quantity of sulphuric, then well washed in pure water, and dried for about two hours. By this process all the vegetable fibres in the creation become highly explosive. This fac was first noticed by Professor Otto, ot Bruns wick, about fourteen years ago; and again by Pelonze of Paris, in 1838 ; and finally fully published in the English press about the early part of the year 1845, under the name of guncotton as it was called by Professor Schonbein, or as M. Pelonze called it, xyloidine.
Now, considering the very intense power of xyloidine, it is found to be the most tractable ingredient we know-for example, compres sion, or matting, suffices to limit, retard, or entirely prevent its explosion-not like gun powder, by one fired graiu of which a whole mass of the same powder is instantaneously ignited and exploded ; no by slighter or grea ter degree of compression, , have caused a lons sliver of xyloidine to explode in my hand in six and sevendegrees of velocity and force or, by compressiug a certzin part of the sliver between my fingers, I have limited its explo sion to the inere loose and carded parts of it.

The explosive qualties of this ingredien are so great, that very small quantities and small apparatus are required. For an engine of two horse power, a thread not larger in aiz than ladies' sewing cotton is sufficient. thread of this size passed through either end of a piston, and divided by compression, and these parts exploded by electricity, will fur nish the power. Mr. Isaac Mickle, of Cam den, New Jersey, has built one of this size.The working machinery occupies no more space than a man'shat. He also says that, " in steainboats, locomotives, \&c., this must create an entire revolution, but above all this he says that he has made another discovery, which verges almost on a miracle, it is thin, that carriages can be propelled on common roads without steam, fire, magnetism, air or animal power, and ships without paddles, saile or any kind of propellers whatever."
It is always cheering to stumble upon some thing new, especially when it is a discovery like the above, which is sure to place all our steam engines on the upper chelf, to take a long sleep as war worn veterans, good in their day, but no longer able to eompote with thei
xyloidine dwarfish opponents than could an English longbow with a rifle. We have alwaya said, that we just want such a moter By it, the California balloon is no longer prob lematical, and although it did not depart as was promised, on the 15th of last April; yet If it starts of on the 15th of April, 1850, it will make only a year's difference and what of that. We have not been informed how Mr. Mickle's engine, at Camden, N. J., operates, and therefore cannot really say anything about it, but we hope that all the noble Count say on the subject, is true, it must be true you know when it comes from such high authority.
There is one discrepancy however, in the Count's account of this xyloidine which does not all agree with Prof. Schonbein. The Count says that xyloidine is the same substance which Schonbein calls gun cotton, bu this is not so. The gun cotton was discover ed by Walter Crum, of Thornliebank, Glasgow, to be pyrozylodine an essentially differ ent composition, says Prof. Schonbein, fron the xyloidine of Pelonze. According to the noble Count's statement, we must express no more doubts about perpetual motion now, as astic that we have to do is, just to explode two strips of it alternately above and below a piston in a cylinder, cutting of at half stroke and ex hausting to let the gas travel back again in an outside tube, and thus we have the same xyloidine that gave the first impulse, travelling round and round, like keeping the pudding hot, all day long, and night too if necessary.
The Count states that "a cubic inch" of his xyloidine exerts a pressure of noless than 46 tons on the square inch. Now as this is a permanent elastic fiuid not to be collapsed, one cubic inch by the operation we have decribed will drive an engine of 22 and nearly a third horse power, making only 5 strokes per minute, if the stroke is 3 feet and a quarter, and if the pressure alone has only a velocity of 16 feet per minute, but as we ar not enlightened on the velocity and pressure the same time, we must stand up back to the wall on this point. As the nobleman's let ter has been extensively praised in America papers, we hope that we may be excused, no for our incredulity, as that is very tully developed, but for a want of optic perceptabiliy, which some may attribute to ozone in the New York atmosphere, and this may really be the case, at least, we are positive that it i not xyloidine.

Ames's Great Machine Factory-
At Chicopee, Mass., formerly Cabot an Chicopee, is the extensive and far famed es tablishment, knownas the Ames Manufactur ing Co. In this establishment 300 men find constant employment, at various branches of mechanical productions. There are manufactured splendid cutlery for Uncle Sam's ser vice in the shape of " swords of metal true, every one of which is submitted to a bending force of a severe bature, and is then whipped on edge, back and flatwise on hard blocks of wood of different forms, until the experienced tester is satisfied that it can cut through a bar of steel as thick as that severed by the famous cross hilt of Cceur de Lion. Besidea war cutlery, there is made in this establishment lathes of a superior finish, and also the well known augurs for boring pump logs-a most ingenious contrivance-invented by the ather of the present gifted and gentlemanlv proprietor. Machinery for the cotton and woolen manufacture is also made with an accuracy not surpassed by any machine shop in his country. At the present moment there is ore beautiful machinery nearly completed Depot, a place about nine miles above Spring. ield, on the Connecticut. In fact, this estab lishment manufactures neerly all kinds of machinery and tools, and irom the known skill of the operatives empioyed and the genius of the proprietor, it is not too much to say, that rom the delicate hair spring and gearing of a watch, to the ponderous proportions of the mighty oteam engine, all can be conatructed tion of parte, not outrivalled, if equalled by any eotabliohment of the kindin the world.

Turbine Wheels of various powers, for prime moters, forms a very interesting feature in the establishment. This kind of wheels are now extensively known and used, and in many situations they are better than overshot wheels. Many factories might be erected and riven by Turbine wheels on the banks of riers, where overshot wheels would be out o he question.
The writer of thisarticle has no interest or desire to flatter any man, or establishment but being on a recent excursion to Springfield he embraced the opportunity of visiting this stablishment, and as he experiences delight n looking upon beautiful machinery, he felt an impulse within him to give expression to his feelings, by stating briefly what is done at the above place.
w.

Lime.---Some of its Uses.

Lime has been known from the remotes ages. It is found under different forms, but as it is used and known it is the oxide of calcium. It is composed of the metal calcium 71.91 ; oxygen $21.09=100.00$. In nature it is found combined with sulphuric acid and is called Gypsum and Plaster of Paris, and wher in a crystalline form, it is named alabaster.When it is combined with carbonic acid, it is chalk in one form and limestone in another and when crystallized, it is marble. It is ound scattered under these different forms in most every country. Lime can be obtained by roasting oyster shells or any of the carbo nates of lime, in a kiln. The roasting drives of the carbonic acid and what is called quicklime is the result. When sprinkled with waer it becomes very hot, by the water giving out its heat in the new combination, and combining with the lime to form a hydrate. As the lime is anhydrous, it will also imbibe moisture, if exposed, from the atmosphere, and then it falls into powder. In the combination of water with lime a heat of 300° centigrade is produced-a heat sufficiently in ense to ignite many combustible bodies. The hydrate of lime (slacked lime) is very spa ringly soluble in water, and what is strange cold water solves more of it than warm. One grain of lime requires 1270 grains of wate at 212° to solve it, while it requires only 972 grains of water at 130°, and only 778 at 60° Water at 32^{a} is capable of dissolving twice as nuch lime as water at 212.
The hydrate of lime possesses one curious property, viz. the quality of absorbing carbo nic acid gas when it is left exposed. Quick ime therefore loses its property of mixing well to form mortar, when it becomes old, if it has been exposed, for the carbonate of lime thus reformed, will not mix with water.When lime is mixed with water, it has also the property of absorbing carbonic acid gas rom the atmosphere, which is known by a cale forming on the lime vats. Tanners and Dyers know this, but few of them know the cause of such formations. It is this quality of the hydrate of lime which makes it a good disinfectant. It gives up its oxygen 28.0 and embraces the deleterious carbonic acid gas.
No bleach works, dye works or soap works should use water impregnated with lime, for it decomposes common soapa and forms an insoluble lime base soap. Our carpet facto ries would do well to pay some attention to his subject, to see that they are not losing some hundreds of dollars every year. The nostdelicate test of lime is the oxalate of ammonia. When this is added to water sup. posed to contain lime, if that body is in the water, it will be thrown down in a curdy pre cipitate. This test will also answer for those who may wish to test the water they desire to use for steam boilers. The precipitate is but slightly soluble in water. The oxalate of am nonia, will also precipitate an oxalate of ba yta, or strontia, if these substances are in th water, but they are very scarce indeed in comparison with the carbonates of lime.
The moderns use lime for a great number of purposes unknown to the ancients. It has been a greatcivilizer, and we do not know how we could do without it. It is kind in Provi dence to have made it so abundant. It is used for building our houses, for raising our food, or bleaching our clothes, and in dyeing some of the most beantiful oolors. The metallu giet uses it asa flax in the separation of me
tals from their ores, and the glass maker uses it in his art. As a sulphate it is used to take epresentations of things that were and are, and as a carbonate we behold it coming from the studio of a Powers with the inspiration of ancient Greece glowing in every bounding line of beauty. In short, lime is one of those products of nature, which is so common that ew do not know and fewer still reflect upon its real benefits, but we verily believe that if it was unknown, and we had no adequate substitute for it , we would be little better than the barbarians who now live in hute and roam with fish bone spears over the wilds of the Pacific Islands.

Needies.

In the manufacture of needles, the slender bars of steel are forged out by a succession of hammers, each one less in weight and quicker in stroke than its predecessor, as the motion of the hammer is alternating, the dislocating effects of its momentum when thrown into rapid vibration would be enormous, but for the contrivance of giving the hammer a double face, and causing it to strike every time it rises against a block of steel above, from which it is thrown back upon the anvil. The vibration is thus produced by a series of rebounds between two opposing surfaces. Five hundred strokes can thus be made in a minute, while the power is greatly economized and the strain upon the stalk and axle nearly annihilated.

Great Patent Case.
On the 13th inst., at Frankfort, Ky., in the United States Circuit Court, Judges McKinley and Munroe on the bench, decision was made in favor of Henry O'Rielly, giving him the privilege to use Bain's Instruments from Nashville to Louisville, which obviates the injunction, for infringement, obtained by Morse ast fall over the Columbian, or Zook \& Barnes' instruments, and regarding which so much was said in the newspapers.
The decision must have been rendered alhough we have not heard what the charge was, that Bains' telegra;h, chemical, and Morse's electro magnetic, were entirely different inventions.

Free Bathing for the Poor.
The Society for the Employment and Instruction of the Poor have thrown open their Baths in the House of Industry, Moyamensing, Philadelphia, to the poor, at the nominal rate of five cents for each bath, to those able to pas, butiree to the needy, whose means do not admit of this outlay. The importance of cleanliness at the present time should prompt many to a vail themselves of the opportunity so liberally offered to them.
It is al so proposed to adupt the same system in this city. The subject is before the Common Council. We hope to see the system adopted and carried out.

Another New Planet

Foreign papers announce that Professor Schumacher, Altano, announces, by a circuar of the 11th of May the discovery of another new planet. It was observed at Naples by Signor Gasparis, on the 12th of April. It resembles a star of the 9th or 10th magnitude and its position was near a star which appears on Steinbel's celestial chart in right ascension, $12 \mathrm{~h}, 9 \mathrm{~m} .49 \mathrm{~s}$., and in-7 deg. $0 \mathrm{~m} .9 \mathrm{s}$. , and forms No. 23,098 in Lalande's catalogue. The motion of the planet was retrograde, and it was approaching the equator. This is the ninth new body (includng planets' satellites) which has been added to the solar system within the last four years.

Dredging Sandussy Harbor.
The Cleveland Plain Dealer says, that the Sanduakians have voted a tax upon themselves of forty thousand dollars, and more if necessary, for the purpose of making their Bay navigable. The propeller Petrel towed up trom Buffalo the other day, a dredging machine which cost $\$ 6,000$, and which, it is estimated will require $\$ 3,000$ more to put in operation. It is calculated to begin operations in about six weeks, and to commence at the mouth of the Bay, where a new channel is to be opened 1 nto it.
There is a kınd of wood called China wood, now begianing to be extenoively used in cainet work at the South. It is a good subytitute for Bay mahogeng, and is a native.

list of patents.

infuet from the united states patent office,
For the week ending June 12, 1849. To David Deihl, of Hanover, Pa. for im provement in Seed Planters. Patented June 12, 1849.

To Nelson Platt, of Ottowa, Ills. for improvement in Harvesters. Patented June 12, 1849.

To Joseph W. Briggs, of Cleveland, Ohio, forimprovement in Harness Saddles. Patented June 12, 1849.
To Alfred Stillman, of New York City, for improvement in Steam Pipes for Sugar boiling. Patented June 12, 1849.
To George Colby of Fayettsville, Pa. for improvement in Drill Barrows. Patented June 12, 1849.
To J. Adams, L. Adams \& L. H. Moore, of Mass. for improvement in Machines for cutting out Felloes. Patented June 12, 1849.
To F. C. Goffin \& C. Liebrick, of Philadelphia, Pa., for improved Padlock. Patented phia, Pa., for
June 12, 1849.
To Reuben Murdock, of Rochester, N. Y. for improvement in Barrel machinery. Patented June 12, 1849.
To Isaac Knight of Baltimore, Md. for improvementin Trucksfor RailroadCars. Patented June 12, 1849.
To John A. Taplin, of Fishkill, N. Y. for improved construction of the master wheel of horse powers. Patented June 12, 1849.
To Jacob Mumma, of Middletown, Pa. for improvernent in Corn Shellers. Patented June 12, 1849.
To Chapman Warner of Louisville, Ky. for improvement in Churns. Patented June 12, 1849.

To E. Von Heeringen, of Pickensville, Ala. for improvement in Musical Notation. Patented June 12, 1849.
To L. P. Haslett, of Louisville, Ky. for improvement in Inhalers or Lung Protectors. Patented June 12, 1849.
To J. L. Mott, of New York City, forimprovement in Cooking Stoves. Patented June 12, 1849.

The History of the Solar System. By J. P. C. Nichols, Professor of Practical Astronomy in the University of Glas. goro.

(Concluded.)

There is a little insect called the ephemera, which lives out its lifetıme in an hour. Sup. posing a reasoning epheraera were to contemplate the blossom, it would regard it as an absolute existence, as a thing which is thus and
thus-and not as a thing which had become what it is. It would notimagine its developement from the seed down to its appearance in beauty on the tree. Man is epbemera; shall he decide of the august creation of his Maker, that it may not have a history and develope-
ment of its own? From what prior condition maust we imagine the present solar system to have been evolved, in order that it may contain the arrangements and dispositions we have seen in it? This inquiry is by no means a nov-
el one. Geologists have, with reference to our el one. Geologists have, with reference to our
own planet alone, traced the present condition of things back to a fluid state of matter. must go beyond that period and conceive the solar system as existing in a gaseous condition, in a chaotic, formless state. Now, in reference to the speculations in which I proceed to enter, I must say, that a great change has re-
cently taken place. Sir Wm. Herschell thought-and with the facts then known, I see not how he could have reasoned other-wise-that many of the dim spots we see in the heavens are not clusters of stars, but accumulations of matter existing in the gaseous state. The discoveries made with the large telescope, at Parsonstown, have destroyed so much of the speculation as depended on the ganeous accumulations of matter, and we rea.
son only from the evidenees of a former like condition of the solar system. The hypothesis must be accepted now, or rejected, according as it agrees with what we see around us and, also, according as it explains the phenomena for which it is required to account The theory I am about to explain was given to the world by the great French astronomer. Laplace, than whoma a greater man in this department of science has not appeared since our own Newton. The solar syatem may have comeinto being out of some nebulous mass, which has gradually condensed according to the simple laws of gravity. In order to understand what may have taken place, we must follow the condensation of this nebulous mass, and enquire what, according to known laws, would take place; and if we find that our
system is just such an one as must result of necessity from laws acting under those circumstances, we shall have established a very high degree of probability for the hypothesis.There is also one other hypothess which we must assume at the commencement. The question is, in what condition may this nebulous mass have been in ? Now to answer these we.must ask, what is the great general distinguishing feiture of our solar system The answer is, the rotation of all its bodies round a common centre, and in one direction and their own rotation on their own axis. Our supplementary hypothesis is, that the nebulæ out of which the solar system is formed existed in a state of rotation. This motion may have been very slow, and very indefinite ; still it was a motion of rotation somewhat like a whirlpool. This assumption is further justifiable, because motion in a mass of matter that is condensing would, in obedience to mechanical laws, turn into a whirling motion. We assume then, that a motion of this kind exis. ted in the nebulx. It is a consequence of the laws of condensing bodies that this motion should become more and more definite, and the solid body coming out of this rotation will have a rotation round its own axis. The swiftness of the motion must increase as condensation goes on. Notice what condensation real-
ly means; It is simply a flow ot matter from the extremity of the outer rim to the centre of the mass. As the outer particles are moving faster than those nearer the centre, if they are brought nearer to, they will increase the speed stands this mechanical law; when he wishes to astonish us by the rapidity with which he can turn round, he draws in his extended arms, and keeps them close to his body, and by that means greatly accelerates the rotation of his body. You are aware that the sun rotates on its own axis; it is an important fact, that the fixed stars, according to the belief of astronomers, rotate in a similar manner on theirs.-
Rotation on an axis may be said to be the condition of steller existence ; so that if these grand orbs came out of matter like our own, we may be able to explain how that motion originated. The rotation of the sun about his axis is an inherent part of our hyphothesis but there is a question of far greater import. Does the same hypothesis apply to the forms of planets? We see how this central mass may originate, and have a rotating motion; but how do the planets arise in such a change Let us conceive for a moment what it is tha keeps up the connection of the nebula with the above masg. There are two forces acting upon every particle of matter on the outer rim, there is the tendency of each particle to fly off; and this tendency is counteracted by the attraction of the general mass. Now if one of these forces should ever get to be stronger than the other, the balance would be destroyed, and the connection broken. Now, the nebulæ must have had some parts of its substance less condensed than the rest; and if one part of this less condensable matter came to occupy this outer rim, it would separate itself from the mass, and fly off; we should have a separate ring of uncondensed matter. This may be illustrated by a common occurrence; it ofter happens that the grind-stone is driven round with so great rapidity, that what 1 have been supposing actually takes place; the balance between the centrifugal and centripetal iorces is destroyed, and a piece of the outer
circle fies off. Had this outer portion been not of atone, but a belt of uleatic oubatanoe,
inetead of breaking into pieces it would nave expanded itself, and made a separate ring at some little distance frcm the grindstone. Ow ing to the attraction of the earth, this ring would have fallen to the ground; but if the same could happen away from such a powe of attraction, the ring would have revolved round the mass it had left. It is certain tha from a mass composed of different portions of matter, such rings must separate themselves from the general mass of matter in course of condensation, so that ultimately a great solid globe wonld be left, surrounded by a numbe of subservient rings at different intervals of space. We now see how a dependent and se parate matter may arise. Before proceeding further, let us see how far we have got. We have attained to the idea of the way in which dependent and separate matter might arise how we might have a central globe and rota tory motion; and how, further, that rings must be thrown off from the equator of the mass.This last tact is the explanation of the first question we proposed. How is it that all the planets move in the same plane? It is rot only that all were thrown of the sun, but, that all were thrown off the sun's equator. It must be obvious that the rings would be thrown off there, and nowhere else, as the veocity and expansion would be there greatest. These rings would continue to turn round the central mass, with just the velocity it had when they left it. Further, whatever become of these rings, in whatever form they mould themselves, the masses they form must revolve lmost in circles. We have now the explanation of three arrangements-first, of the moions of the planets all in one plane;-second ly , their motion round the sun, all in one di rection; and thirdly, that they move almost in circles. The problem is then rapidly becoming simplified. We now ask-What may become of these rings: into what forms may they ultimately resolve themselves? There are three possible modes in which the rings may arrange themselves, two of which ar very improbable, and still quite possible. Suppose that the outer ring had been perfectly uniform in its composition, no one portion being denser than another, then the ultimate form it would assume would be that of a solid ring; we should have solid rings moving in pace round the sun. This, however, could not happen unless the ring was perfectly uni form in constitution at the time when it abandoned the mass. Such an improbable form, et me notice, we have within our own sola ystem-that remarkable ring round the plan et Saturn, the only one with which we ar acquainted. I think it is somewhat in favor of our hypothesis, if we can get evidences for it, even from the exceptions and anomalies in the facts we observe. Secondly; it the ring is not uniform at the time of leaving the mass, it must break up, and the denser portion would draw all the surrounding matter into one mass. Two things might then happen, supposing that the matter into which thering was being drawn were so disposed as to balance each other in the circle of mutual attraction. It is clear that in that case we should have, not a ring, but a number of small bodies moving round the sun at small distances from it. Tnis, though a perfectly possible occurrence, is one by no means likely. Singularly we have an instance of formation in the group of planets which lie between Mars and Jupiter; they are quite small, and appear to lie at the same distance from the sun. Thirdly : the mode in which a ring would be most likely to break up would be so that one denser part would absorbinto itself the whole matter of the mass: the ring would resolve itself into one large body, which would assume the circular shape, and revolve round the sun. hat the general law of our system-that of a central mass, and other masses revolving round it-would be that which comes nearest to our hypothesis. We have not spoken of the rotation of bodies round their axis: these all move in the same direction. How is this to be accounted for? Let us suppose the outer rim of the masses to be broken up, and see what motion the fragments will assume. As the outer rim itself had a higher velocity than the reat of the mass, so the exterior portion of the rim has a quicker motion than the interiWhen the ring is broken, the outer por-
tions of each fragment will plunge over and over the inner portion, and cause rotation round the centre of gravity. From this fact we see the absolute necessity that evers one of the planets should move in the same direction with its orbit. We have contemplated the birth and developement of this beautiful system of ours-dare we stretch our thoughts to that time when even it shall fail? If the theory laid before you to-night be the correct one, we may. Youknow how the planets are retained in their orbits; it is because the two opposite forces exactly balance each other. But modern astonomy hasproved that there is a power at work destroying their balance.From observations made on the retarded return of Euche's comet, and its gradual ap. proximation to the sun, we learn the existence of a fluid, an ether, which, however subtle, tends to diminish the centrifugal force, and add to the attraction of the sun.
However slowly it may approach, we may, then, contemplate the day when this present system shall pass away ; not, however, into a vast ruin, but in its own beautiful and majestic order, just like a flower, which, having adorned the earth, lets drop its leaves when its work is done, and falls back obediently on is mother's bosom.

The Pope's State Carriage.

The Pope's state carriage, a most gorgeous vehicle, commenced by Leo. XII., finished by Gregory XVI. and retouched during the reign of Pius IX., at an expeuse altogether of 24,000 scudi ($£ 5,001$.), was recently conveyed in great pomp from the Vatican to the Franciscan Convent of Ara Cæli, on the Capitoline hill, where it was formally made over the monks, to serve exclusively for the revered image of the infant Jesus, when carried to visit the sick and dying in various parts of the city. This image, considered by its beneficial results to be one of the most miraculous that Rome possesses, has nevertheless been hitherto borne on its charitable missions in an exceedingly shabby coach, so that the soldiers of the 'corps de garde' seldom recognized the equipage in time to presentarms before it had gone by; buton that afternonn the good citizens and their wives wept with delight on beholding the santo bambino, attended by the guardian monks, installed in all the splendors of the papal carriage, and proceeding triumphantly down the Curso to visit the sick and wounded at the hospital San Giacomo.

hiterary notices.

The Pictortal Organ.

Messrs. Oliver \& Brothers, the enterprising publishers, have just issued a splendid Pic-
torial as No. 1 of Vol. 9 . Those who want to see a good pictorial should buy it and those who want the Temperance paper, edited with narked ability, should subscribe for it.

History of Wonderful Inventions.

This is a very able and useful book of the Boys' Own Library, published by Harper \&c
Brothers. There are two volumes, 25 cents each. They should be in every family, as they are standard, and comprise a history of those things which have revolutionized society more than all the laws enacted by nations orbattles won by heroes.
Our thanks are due to Drs. Wesselhceft and Grau, of the Water Cure Establishment, Bratleboro, Vt. for a copy of their very interest-
ing Report. It states that 392 cases were trea. ing Report. It states that 392.
hydropathically in 1848.
Messrs. Dewitt \& Davenport have just issued a pamphlet, enctled Cholera, its Causes, Symptoms and Treatment considered atid exPlark, by J. P. Batchelder, M. D., of New very reasonable. Price $12 \frac{1}{2}$ cents.

Through the politeness of Messrs. Dewitt No. of Sartain's Magazine, which in point of excellence and beauty, fully equals if not surpasses any former number. The typogtaphy is exceedingly well executed, and the embellishments are of the highest order. We are gratified to know that this work meets an encouraging support.

Peterson's Ladies National is also on our table. "The Gentle Warning," is one of the best executed mezzotint engravings we have ever seen, "Edith," an equestrian firure, is
also very pretty. This number cummences a also very pretty. This number cummences a
the 16 th volume, and the great improvements which have been made by the enterprising publisher, we hope will not go unrewarded. The matter is alwayo good and fascinating.Dewitt \& Davenport, Agents.

