

NEW YORK, JUNE 23, 1849.

A New Motive Power.

The following is a condensed description of new motive power taken from a letter by the author, Count De Wardinsky, published in the London Mising Journal. He says:-
This new motive power surpasses by far steam, or any other power actually known for, if we employ one cubic inch of the patented ingredient, we obtain from it no less a pressure than that of forty-six tons upon the square inch of surface. The gasea evolved
consist chietly of carbonic oxide and carbonic consist chietly of carbonic oxide and carbonic
acid gas, both gases, permanently elastic, so that passing through cold air or water, they do not collapse, but will follow the piston to the utmost limit of its work. In using this ingredient we require neither fire or water; $;$ creates neither smoke nor any offensive effluvia, and, with the exception ot a slight moisture, or pure vapor, it leaves no residum be Hind. Neither is there any compound in the gases which could corrode metals, as was pre sumed by Tschemacher, Porrett, Fordos, and Gelis, who seem to have copied from each other the supposition, "that there might be compounds of cyanogen in the gases of this in gredient, judging from the color of the flame when such gases were ignited," never telling us that the greatest portion was carbonic oxide, which gas is well known to burn with a dark blue flame, the ingredient in question, consists, in fact, of all kınds of vegetable fi bres, such as cotton, flax, hemp, tow, straw hay, paper, \&c., rendered explosive by their being dipped for 14 or 15 minutes in nitric a cid, strengthened by an admixture of an equal quantity of sulphuric, then well washed in pure water, and dried for about two hours. By this process all the vegetable fibres in the cre ation become highly explosive. This fact was first noticed by Professor Otto, ot Bruns. wick, about fourteen years ago; and again by Pelonze of Paris, in 1838 ; and finally fully published in the English press about the early part of the year 1845, under the name of guncotton as it was called by Professor Schonbein, or as M. Pelonze called it, xyloidine.
Now, considering the very intense power of xyloidine, it is found to be the most tractable ingredient we know-for example, compres sion, or matting, suffices to limit, retard, or entirely prevent its explosion-not like gun powder, by one fired graiu of which a whole mass of the same powder is instantaneously ignited and exploded ; no by slighter or grea ter degree of compression, I have causeda lons sliver of xyloidine to explode in my hand in six and sevendegreesof velocity and force or, by compressiug a certzin part of the sliver between my fingers, I have limited its explo sion to the mere loose and carded parts of it.
The explosive qualties of this ingredient are so great, that very small quantities and small apparatus are required. For an engine of two horse power, a thread not larger in aize than ladies' sewing cotton is sufficient. thread of this size passed through either end of a piston, and divided by compression, and these parts exploded by electricity, will fur nish the power. Mr. Isaac Mickle, of Cam den, New Jersey, has built one of this size. The working machinery occupies no more space than a man'shat. Healso says that, " in steainboats, locomotives, \&c., this must create an entire revolution, but above all this he ays that he has made another discovery, which verges almost on a miracle, it is this, that carriages can be propelled on common roads without steam, fire, magnetism, air or animal power, and ships without paddles, sails or any kind of propellers whatever."
It is always cheering to stumble upon something new, especially when it is a discovery lake the above, which is sure to place all our steam engines on the upper chelf, to take a long sleep as war worn veterans, good in their day, but no longer able to eompote with thei
xyloidine dwarfish opponents than could an English longbow with a rifle. We have alWayd baid, that we just want such a moter By it, the California balloon is no longer prob. lematical, and although it did not depart as was promised, on the 15th of last April; ye If it starts of on the 15th of April, 1850, it will make only a year's difference and what ot that. We have not been informed how Mr. Mickle's engine, at Camden, N. J., operates, and therefore cannot really say anything about it, but we hope that all the noble Count says on the subject, is true, it must be true you know when it comes from such high authority.
There is one diserepancy however, in the Count's account of this xyloidine which does not all agree with Prof. Schonbein. The Count rays that xyloidine is the same sub stance which Schonbein calls gun cotton, but this is not so. The gun cotton was discover ed by Walter Crum, of Thornliebank, Glasgow, to be pyrozylodine an essentially differ ont composition, says Prof. Schonbein, from he xyloidine of Pelonze. According to the noble Count's statement, we must express no more doubts about perpetual motion now, as the xyloidine exploded forms a permanen elastic gas, and being perfectly tractable, all that we have to do is, just to explode two strips of it alternately above and below a piston in a cylinder, cutting off at half stroke and ex hausting to let the gas travel back again in an outside tube, and thus we have the same xyloidine that gave the first impulse ravelling round and round, like keeping the pudding hot, all day long, and night too if necessary.
The Count states that "a cubic inch" of his xyloidine exerts a pressure of noless than 46 tons on the square inch. Now as this is a permanent elastic fiuid not to be collapsed, one cubic inch by the operation we have described will drive an engine of 22 and nearly a third horse power, making only 5 strokes per minute, if the stroke is 3 feet and a quar ter, and if the pressure alone has only a velocity of 16 feet per minute, but as we ar not enlightened on the velocity and pressure the same time, we must stand up back to the wall on this point. As the nobleman's let ter has been extensively praised in American papers, we hope that we may be excused, no for our incredulity, as that is very tully developed, but for a want of optic perceptability, which some may attribute to ozone in the New York atmosphere, and this may really be the case, at least, we are positive that it is not xyloidine.

Ames's Great machine Factory-
At Chicopee, Mass., formerly Cabot an Chicopee, is the extensive and far famed es tablishment, knownas the Ames Manufacturing Co. In this establishment 300 men find constant employment, at various branches of mechanical productions. There are manufactured splendid cutlery for Uncle Sam's serrice in the shape of " swords of metal true," every one of which is submitted to a bending force of a severe bature, and is then whipped on edge, back and flatwise on hard blocks of wood of different forms, until the experienced tester is satisfied that it can cut through a bar of steel as thick as that severed by the famous crose hilt of Cceur de Lion. Besides war cutlery, there is made in this establish ment lathes of a superior finish, and also the well known augurs for boring pump logs-a most ingenious contrivance-invented by the fother of the present gifted and gentlemanlv proprietor. Machinery for the cotton and woolen manufacture is also made with an acracy not surpassed by any machine shop in some beautiful machinery nearly completed for factories in progress of erection at Ireland Depot, a place about nine miles above Spring. field, on the Connecticut. In fact, this estab lishment manufactures neerly all kinds of machinery and tools, and irom the known skill of the operatives empioyed and the genius of he proprietor, it is not too much to say, that rom the delicate hair spring and gearing of a watch, to the ponderous proportions of the mighty eteam engine, all can be conetructed
with an aeourany of proportion and combinaion of parto, not outrivalled, if equalled b any establiohment of the kindin the world.

Turbine Wheels of various powers, for prime moters, forms a very interesting feature in the establishment. This kind of wheels are now extensively known and used, and in many situations they are better than overshot wheels. Many factories might be erected and driven by Turbine wheels on the banks of rivers, where overshot wheels would be out of he question.
The writer of thisarticle has no interest or desire to flatter any man, or establishment but being on a recent excursion to Springfield he embraced the opportunity of visiting thi establishment, and as he experiences delight in looking upon beautiful machinery, he felt a impulse within him to give expression to his feelings, by stating briefly what is done at the above place.

Lime.--Some of its Users.

Lime has been known from the remotest ages. It is found under different forms, but as it is used and known it is the oxide of calcium. It is composed of the metal calcium 71.91 ; oxygen $21.09=100.00$. In nature it is found combined with sulphuric acid and is called Gypsum and Plaster of Paris, and wher na crystalline form, it is named alabaster.When it is combined with carbonic acid, it is chalk in one form and limestone in another, and when crystallized, it is marble. It is ound scattered under these different forms in almost every country. Lime can be obtained by roasting oyster shells or any of the carbo. nates of lime, in a kiln. The roasting drives of the carbonic acid and what is called quick. lime is the result. When sprinkled with water it becomes very hot, by the water giving out its heat in the new combination, and combining with the lime to form a hydrate. As the lime is anhydrous, it will also imbibe moisture, if exposed, from the atmosphere, and then it falls into powder. In the combination of water with lime a heat of 300° cenigrade is produced-a heat sufficiently inense to ignite many combustible bodies. The hydrate of lime (slacked lime) is very sparingly soluble in water, and what is strange cold water solves more of it than warm. One grain of lime requires 1270 grains of water at 2120 to solve it, while it requires only 972 grains of water at 130°, and only 778 at 60° Water at 32^{a} is capable of dissolving twice as much lime as waterat 212 .
The hydrate of lime possesses one curious property, viz. the quality ot absorbing carbo nic acid gas when it is left exposed. Quickime therefore loses its property of mixing well to form mortar, when it becomes old, if it has been exposed, for the carbonate of lime thus reformed, will not mix with water.When lime is mixed with water, it has also the property of absorbing carbonic acid gas from the atmosphere, which is known by a scale forming on the lime vats. Tanners and Dyers know this, but few of them know the cause of such formations. It is this quality of the hydrate of lime which makes it a good disinfectant. It gives up its oxygen 28.09 and embraces the deleterious carbonic acid gas.
No bleach works, dye works or soap works should use water impregnated with lime, for it decomposes common soaps and forms an nsoluble lime base soap. Our carpet facto ries would do well to pay some attention to this subject, to see that they are not losing some hundreds of dollars every year. The nostdelicate test of lime is the oxalate of mmonia. When this is added to water sup. posed to contain lime, if that body io in the water, it will be thrown down in a curdy pre cipitate. This test will also answer for those who may wish to test the water they desire to use for steam boilers. The precipitate is but slightly soluble in water. The oxalate of am monia, will also precipitate an oxalate of ba ryta, or strontia, if these substances are in th water, but they are very scarce indeed in comparison with the carbonates of lime.
The moderns use lime for a great number of purposes unknown to the ancients. It has been a great civilizer, and we do not know how we could do without it. It is kind in Provi dence to have made it so abundant. It is used or building our houses, for raising our food, or bleaching our clothes, and in dyeing some of the mont beantiful colors. The metallu gist uses it as a flax in the separation of me
tals from their ores, and the glass maker uses it in his art. As a sulphate it is used to take representations of things that were and are, and as a carbonate we behold it coming from the studio of a Powers with the inspiration of ancient Greece glowing in every bounding line of beauty. In short, lime is one of those products of nature, which is so common that few do not know and fewer still reflect upon its real benefits, but we verily believe that if it was unknown, and we had no ade. quate substitute for it, we would be little better than the barbarians who now live in huto and roam with fish bone spears over the wilds of the Pacific Islands.

In the manufacture of needles, the slender bars of steel are forged out by a succession of hammers, each one less in weight and quicker in stroke than its predecessor, as the motion of the hammer is alternating, the dislocating effects of its momentum when thrown into rapid vibration would be enormous, but for the contrivance of giving the hammer a double face, and causing it to strike every time it rises against a block of steel above, from which it is thrown back upon the anvil. The vibration is thus produced by a series of rebounds between two opposing surfaces. Five hundred strokes can thus be made in a minute, while the power is greatly economized and nihilated.

Great Patent Case.
On the 13th inst., at Frankfort, Ky., in the United States Circuit Court, Judges McKinley and Munroe on the bench, decision was made in favor of Henry 0 'Rielly, giving him the privilege to use Bain's Instruments from Nashville to Louisville, which obviates the injunction, for infringement, obtained by Morse last fall over the Columbian, or Zook \& Barnes' instruments, and regarding which so nuch was said in the newspapers.
The decision must have been rendered alhough we have not heard what the charge was, that Bains' telegrai h , chemical, and Morse's electro magnetic, were entirely different inventions.

Free Bathing for the Poor.
The Society for the Employment and Instruction of the Poor have thrown open their Baths in the House of Industry, Moyamensing, Philadelphia, to the poor, at the nominal rate of five cents for each bath, to those able to pas, butiree to the needy, whose means do not admit of this outlay. The importance of cleanliness at the present time should prompt many to avail themselves of the opportunity so liberally offered to them.
It is also proposed to adupt the same system in this city. The subject is before the Common Council. We hope to see the system adopted and carried out.

Another New Planet.

Foreign papers announce that Professor Schumacher, Altano, announces, by a circuar of the 11th of May the discovery of another new planet. It was observed at Naples by Signor Gasparis, on the 12th of April. It resembles a star of the 9th or 10th magnitude and its position was near a star which appears on Steinherl's celestial chart in right ascension, $12 \mathrm{~h}, 9 \mathrm{~m} .49 \mathrm{~s}$., and $\mathrm{in}-7$ deg. $0 \mathrm{~m} .9 \mathrm{s}$. , and forms No. 23,098 in Lalande's catalogue. The motion of the planet was retrograde, and it was approaching the equator. This is the ninth new body (including planets' satellites) which has been added to the solar system within the last four years.

Dredging Sandusky Harbor.
The Cleveland Plain Dealer says, that the Sa nduakians have voted a tax upon themselves of forty thousand dollars, and more if necessary, for the purpose of making their Bay navigable. The propeller Petrel towed up trom Buffalo the other day, a dredging machine which cost $\$ 6,000$, and which, it is estimated will require $\$ 3,000$ more to put in operation. It is calculated to begin operations in about six weeks, and to commence at the mouth of the Bay, where a new channel is to be opened into it.
There is a kind of wood called China wood, now beginaing to be extensively used in cabinet work at the South. It is a good subytitute for Bay mahogeng, and is a native.

