

For the Scientific American.
Poisonous Acids.-Hydrocyanic Acid. (Concluded.)
It has been stated that Prussic acid might in some instances be formed by the decompo sition of the natural fuids in the human stomach. This opinion is very far from being a frivolous one, when we take into consideration that our Prussian blue is all made from animal products, horns, boofs, \&c. Somehave ascribed the rapid deadly effects of Prussic acid to its action upon tbe nervoussystem If the odor of this acid makes a person fall down as if struck with apoplexy, and if a tew drops make him stagger and die in an instant, no one will mistake the system upon which i operates-it surely must be the nervous.
It is barely possible that any person ever can be poisoned by Prussic acid forming on the stomach: Prussic acid consists of 26 cyanogen plus, 1 hydrogen-or of 14 nitrogen plus, 12 carbon plus, 1 hydrogen. Cyanogen is a gas of a strong and peculiar odor, resembling that of rubbed peach leaves. It is highly poisonous and unrespirable, and burns with a rich purple flame. It is composed of carbon and nitrogen, in the proportions of 12 carbon plus, 14 nitrogen, equal to 26 cyanogen. It combines with hydrogen, to produce the hydrocy anic or Prussic acid. The question bas arisen can Prussic acidever be formed in the sto mach ? Or can it be emitted during the decomposition of animal and vegetable substances ? This acid is generated in sensible qua lities, by the action of weak nitric acid, on the volatile oifs and resins; and it exists in a great variety of native combinations in the vegetable kingdum. The most familiar of these, are bitter almonds, the cherry laurel, the leaves of the peact tree, the Kernels of fruits, pipes of apples, \&cc. The distilled water and oil of cherry laurel, are the most des tructive of all narcotic poisons.
Though like alcohol, Prussic acid is a product of art, yet it will be seen, as above, to exist in some plants. It is now generally considered that this baneful acid does not preexist in those vegetables above named, but re sults from the re-action of water. It is supposed to have been proved, that it is formed out of a substance of peculiar properties, denominated amygdalin which is the characteristic constituent of bitter almonds. To show what probability there may be of Prussic aeid being generatedin the human stomach, or evistted after death from animal decompo. sition, it seems to be necessary to give a kind of analysis and synthesis of this poisonous compound.

Prussic acid and water contain the elements of carbonic acid, ammonia, urea, cyanuric acid, cyanille acid, oxalic acid, formic acid, melam, ammelin, melamin, azulmin, mellon, hydromellic acid, allantoin, \&cc. All these very different substances can be obtained from Prussic acid, and the elements of water by various chemical transformations.
It is well known by analysis, that Prussic acid and water, when brought into contact with hydrochloric or muriatic acid, are decomposed into formic acid and ammonia. The nitrogen of the Prussic acid, and a certain quantity of hydrogen of the water, :unite together ands form ammonia-whilst the carbon and hydrogen of the Prussic acid combine with the oxygen of the water, and form formic acid. The ammonia combines with the hydrochloric acid, andformshydrocblurate of ammonia The formic acid and ammona, the products of decom. position, contain the elements of Prussic acid and water, although in another form, and arranged in a different order. Thus we may analyze Pıussic acid by other agents than muriatic acid, and form all the above named substances, buta desideratum is to ascertain whether any of the above named substances, are ever found in the stomach. Some of them can be detected there, while others cannot. Carbonic acid is frequently there, and so also is am.
|monia-but urea; cyanuric acid, oxalic acid, formic acid, \&cc., perhaps never. Thus it may be barely possible for Prussic acid to be generated in the stomach, and emitted during decomposition:

Artificlal Light.

In the solar rays, three tints are so combined, that in their transmission through the azure atmosphere, they yield a perfectly co. lorless light. These rays are red, yellow and blue, and it is to the just and exact balance of these colors, that we owe our pure light. In artificial light, however produced, the equipoise is disturbed-the red and yellow tints predominate to a great extent over the third color, the blue, and thus, all light so produ ced affects the natural and true color of existing objects. To this reasoa we have to at tribute the dificulty of discriminating between delicate tints when viewed by the light of a candle.
When luminous rays are transmitted through tinted glass, it is known that those colors which are complementary to that of the glass are in part neutralized, and the transwitted light is modified according to the colour of the medium employed. Experience tells us that the excess of colour in artificial light exists in the red and yellow tints; the corrective medium, then, must be blue, in order to cause the transmitted light to become acbromatic. The depth of colour (which is to be obtained from cobalt) of the glass, must de. pend materially on its form and thickness, and the nature of the uncorrected light ; this point must rest for its complete elucidation upon the manufaclurer's experience.
Artificial light to be tested, should be enclosed in a fitting box or lantern, let a direct ray fall on a white substance, as paper, side by side with a direct ray of a warm sunlight in a room to which no other' ray of light has access. So long as the ray of corrected artificial light is of a warmer or ruddier quality than the ray of solar light, the achromatic power is short of its highest intensity, and therefore within the range of true achromatic powors, or,further-and more perfect convection. If the artificial light appears colder or bluer, the medium is too deeply tinged, and is not an achromatic but a coloured medium, applicable in no way to the improvement of artificiallight by the correction of the excess of coloured rays emanating therefrom. If the qualities of the respective rays be the same, then it w 11 be evident that the high. est point has been reached, and the medium is at its highest avaliable power or state.

Parastine.

Distil beach tar to dryness, rectify the heavy oil which collects at the bottom of the receiver, and when a thick matter begins to rise, set aside what is distilled, and urge the heat moderately as anything more distills. Pyretaine passes over, containing crystalline scales of paraffine. This mixture being digested with its own volume of alcohol of 0.833 , forms a limpid solution, which is to be gradually diluted with more alcohol, till its bulk becomes 6 or 8 times greater. The alcohol, which at first dissolves the whole, lets the paraffine gradually fall. The precipitate being washed with cold alcohol till it becomes nearly colorless, and then dissolved in boiling alcohol, is deposited on cooling in minute spangles and needles of paraffine. Or the above mixture may be mixed with from one quarter to one half its weight of concentrated sulphuricłacid and subjected for 12 hours to digestion, at a
heat of $150^{\circ} \mathrm{F}$. till, on cooling, crystals of paraffine appear upon the surface. These are to be washed with water, dissolved in alcohol and crystallized. Paraffine is a white sub. stance, void of taste and smell, feels soft between the fingers, has a specific gravity of 0.87 , mells at 112° F., boils at a higher temperature with the exhalation of white fumes, is not decomposed by dry distillation, burns with a clear white flame without smoke or residuum, does not stain paper and consists of 85.22 carbon, and 14.78 hydrogen; having the same composition as olefiant gas. It is decomposed neither by chlorine, strong acids, alkalies, nor potassium; and unites by fusion with sluphur, phosphotus, wax and rosin. It dis. solves readily in warm fat oils, in cold essential oils, in ether, but sparingly in boiling ab-
solute alcohol. Paraffine is a singular solid bicarburet of hydrogen; it has not hitherto mirable candles.

This is a rotary engine invented by Mr . Alen B. Wilson, of Pittsfield, Mass.
A, is the sbaft. B, the piston: $C C$, is the cylinder. D, the steam pipe. E, the exhaust. F, is a valve thrown into the sozket I, by the piston passing under it. G, is a projection which raises the valve at H, when one third round, thus cutting off to receive the benefit of the expansion of the steam. L, is a mortice through the valve indicated by the dotted lines for the steam to exhaust throngh E.
This rotary engine has a very good principle in it. It is double with a plate between the two pistons, which are placed at right an. gles to one another in the cylinders.

Marline Giue.

Digests from two to four parts of caoutchouc, cut into small pieces, in thirty-four parts of coal-tar naphtha, promoting solution by the application or heat, and by agitation. The solution, when formed, will have the consistency of thick cream ; to this add $\epsilon 2$ to 64 parts of the powdered shellac, and heat the mixture over the fire, constantly stirring it until complete fusion and combination has been effected. Pour the mixture, while still hot, on plates of metal, so that it may cool in thin sheets like leather.
. In using the cement, put some of it in an ron vessel, and heat it to about 248° Fah., and apply it with a brush to the surface to be oined. It is said to make a perfect union of pieces of wood, and is recommended for use in ship-build ing ;-hence its name.

Keene's Marble Coment.
Gypsum is baked in the same way as for making plaster-of-paris; it is then soaked in a saturated solutionof alum; agăın baked to the same degree as before, and ground to a fine powder. It is now in a fit state for use. On being worked in the same way as plaster-of-paris, it sets into a vers hard composition which is capable of taking a high polish. It may be coloured by mixing the powder with water containing any mineral colours, instead of common water.
To make Sea Water ficfor Washing Linens at Sea.
Soda put into sea-water renders it turbid; the lime and magnesia fall to the bottom. To make sea-water fit for washing Linen at sea, as much soda must be put in it, as not only to effect a complete precipitation of these earths, but to render the sea water sufficiently lixivial or alkaline. Soda should always be taken to sea for this purpose.

A Cheap Blacking for Shoes.

In three pints of staall beer, put two ounces ot ivory black, and one pennyworth of brown sugar, As soonas they boil, put a desert sponful of sweet oil, and then boil slowly till reduced to a quart. Stir it up with a stick every time it is used; and put it on the shoe when wanted.
Another :-I vory black, two ounces; brown sugar, one ounce and a halt; sweel oil, half a table spoonful. Mix them, and then gradually add a half a pint of small beer.

LITERARY NOTICES.

Minlfie's Drawing Book.
M1wlife's Drawing Book.
A certain London publisher being asked his opinion about a certain work he had 1ssued, replied, "I have sold 5000 copies in one day." This was a covclusive argument in favor of the book. We cannot say how many copies of Minifie's work have been sold in one day, throughout the country, but its racter and it is a book that deserves it.

Linear Perspective.
This is a new work, by E. Jones, Esq, published by C. M. Saxton, 121 Fulton st. this city. It is to be published in monthly parts, at 25 cents each, and will thus be brought
within the reach of all. It is a neat and lu. cid work, characterized by that perfect acquaintance with the art, which distinguishes the author.

Guide to the Temple of Fanac.
This is a neat little volume embracing a
Universal History for Schools, by Emma Willard, publisbed by Barnes \& Co No. 51 Wistreet. The style is clear and the thread of
The tbe history is a silver cord.
The American Phrenological Journal for April, by its able conductors, the Fowlers, is an wow about the great Swedentorg we com mend this number. Swedenborg we com mend this number.
"The Saturday Rambler," published in Boston, by Wm Simmonds \& Co. is a very ably conducted, interesting tamily paper. It
is wortiny of patronag. is wortiny of patronage.
"Scotts Weekly," published at Philadelphia, is also an excellent paper, and we hope it will visit us more regularly. We always

Mr. Ritchie, engraver of our city, has just Mr. Ritchie, engraver of our city, has just
produced an inimitable likeness of Henry Clay from a Portrait by Jarvis. It is a vigorous and spirited portrait-full of intellect and animation. The great fault which we have found with mezzatints, is their tameness-
unsuited to bold display. No fault of this unsuited to bold display. No fault of this kind can be found in this engraving, it looks like a line engraving, and we have been told
that his plates after printıng 12,000 imprés. sions exhibit no perceptible change.

Subscribers in want of any of the Mechanical works noticed in the previous humbers of the Scientific American, can order them
through this office. We have and shall endeavor through this office. We have and shall endeavor to oblige our patrons with any article they may need from this city, and we have only to request them to be as exnhit will trouble.

SCIENTIFIC AMERICAN : 416 Pages of most valuable information, illustrate with upwards of
500 MECHANICAL ENGRAVINGS: sifure Scientific Amerioan differs ontirely from the magazines and papers which tiood the country,
as it is a Weekly Journal of Art, Science and Me. chanics, having for its object the advancement of
the INTERESTS OF MECHANICS, MANUFAC TURERS and INVENTORS Each, number is id
Iustrated with from five to TEN original ENGRA lustrated with from five to TEN Original ENGRA
VINGS OF NEW MECHANICAL INVENTIONS
nearly all of the best inventions which nearly all ofthe best inventions which are patented
at Wa shington being illustrated in the Scientific
American. It also containsa W eekly List of AIter American. It also contansa Weelkly Listof AItrer.
ican Patents. notices ofthe progress of all Mechas ical and Scientific Improvements; pract cal direc
tions on the construction, management and uise of tions on the construction, managoment and u,
all kind of MACHINERY, TOOLS, \&c. \& .
It is printed with clear type on beautiful alt is printed with clear 'type on beautiful pa-
per, and lieing adapted to binding the subscriber
is possessed, at the end of the year, of large vol.
ume of 416 pages. illustrated with upwards ot 500 mechanical engravings.
TERMS : Single sub
Mpchanicalengravings.
TERMS S Single subscription, \$2 a year in ad
vance, \$1 for six month. Those who wish to sub-
scribe have only to enclose the amount Mn M Metter,
directed to
Publishers of the Soientific American, Publishers of the Soientific American,
128 Fult.on street, New York. All Letters must be Post Paid.
INDUCEMENTS FOR CLUBBING.

Southern and Western Money taken at par for sub
scriptions. Post Office Stamps taken at their tult scriptions. Post Office Stamps taken at their ful A SPLENDID PRESENT!
To any person who will send us Three Subseri
bers, we will present a cons of the pates 1 ws on bers, we will presenta copy of the patent laws op
The unity states, toge ther with all the informa. tion relative to PATENT OFFICKBCEINEss, including
full directions for taking out Patents, method ot ma, King the Specifications, Claims, Drawings, Models,
Kaying, selling and transtering buying, selling, and transtering Patent Rights, \&c.
This is a present of GREAT vaLUE, y θ. may beobtain-

 obtain two names besides his own.
MINN \& CO., Scientific American Ofiee,

