

For the Scientific American.
Polsonous Aclus.-Oxalic Acid.
This acid is characterized by white crystals in four sided prisms. It is very soluble in water, very sour and very poisonous. This acid looks something like epsom salts and se ious results have arisen by mistaking the one for the other. Oxalic acid is decomposed a a high heat, into water, carbonic and for mic acids. It can at cnce be known from ep som salts by being exceedingly sour in taste while the salts are very bitter. No person need mistake the two. Oxalic acid volatizes when heated on a platinum foil, while epsom salts only lose their water of crystalization.
If oxalic acid is weak, or has been suspec ted to have produced death in any person, on test is the nitrate of silver, which produces precipitate in a solution that contains 1.4000 part by weight of oxalic acid. This oxalate of silver is a fulminating powder, and when ignited, it leaves no carbonaceous residue.Sulphate of lime also produces a white precipitate with oxalic acid solution. Sulphate of copper produces a greenish white precipitate in oxalic acid solution, which is not easily soluble in hydrochloric acid. Oxalic acid is the best substance known for erasing iron spots on linen. No other acids equal it. It is also used by those who bleach straw and leg. horn hats to clear up their color and take out the iron stains. The straw hats are dried out of it in the sun and it does not seem to injure their texture so readily as some other acids. Some housekeepers use oxalic acid to clean their brass ornaments, such as stair rods, door knobs and many other thingj. There is therefore a danger of children being poisoned with it, as it very often happens that what some The antidotes for this poison are magnesia and chalk. Simple remedies and easily admi nistered.

Sulphuric acid is also sometimes used in families. It cannot strictly be said to be poisonous as it may be used in small quantities diluted in water, and no evil effects produced. It will destroy life, however, if taken into the stomach in a strong state. A simple antidote is saleratus, or any alkali-or chalk or magnesia. We would prefer the latter a an antidote. We have known some cases, where urine was successfully (because convenient) administered.
Nitsic Acid is also a poison, but we neve knew of any cases of poisoning by it. It is a dangerous acid to use. Its fumes are poisonous, and it should be used with great caution in all departments where it may be necessary to employ it. It stains the skin yellow and makes white silk a beautiful golden color.It is injurious to the texture of woolen cloth and is used to produce the orange colors on blue table spreads. Ammonia or potash are the best antidotes.

Light and the Eye.
On closing the eyes, after having looked steadfastly at a sheet of white paper held in the sunfor about a half a minute, and cover ing them without pressure to exclude extraneous light, the figure of the paper remains invisible for some time. At first it is generally white and thengradually changes through the colors of the spectrum. All the colors are seldom seen at the same trial; and it rare ly happens, when one or more are missed that they afterwards appear. Thus when the change is from green to red, yellow or or ange are seldom seen. The change from white generally commences with a light indigo or blue, and terminates with red or some compound of it, but sometimes with a deep blue or violet. The colors aregenerally seen at the edges of the figure first, though this is not always the case; and when they once appear, they often remain mixed up with those that succeed. Many curious modifications and confused mixtures of colors will be perceived at times; but it seldom happens that the colors develope themselves in thefirst in-
stance, contrary to their order, in the spec trum, although when the last has appeared, they occur in various ways.

Superior Red Ink.
Take a small quantity of the best carmine, about the size of a pea, and put it into a small phial with a little spirit of hartshorn to dissolve it. When dissolved put as much pure water in it as will give it the desired shade and then let the bottle not be corked for some time, to allow the hartshorn to evaporate, when it is ready for use. This ink is very permanent and does not change its color. The common red ink is made by boiling brazil wood, taking the strong solution and adding to it a small quantity of dissolved alum. It looks all the better to have a few drops of the muriate of tin added to the liquor-not too much however, or it will injure the pen. A quill is the only pen to use red ink with If a small quantity of sumac and quercitro bark be boiled along with the brazil wood it makes the ink still better-of a scarlet shade. Brazil wood itself is rather on the blue shade. For common purposes, we advise those who use much red ink, and make it themselvesnot to forget the sumac at least, but a very mall quantity will suffice. The liquor should be strained through a cloth as soon as it is boi d , and when cold bottled and kept well closed in the bottle.

Blue Writing Ink.

Four ounces sulphate of iron, $2 \frac{1}{2}$ drachm of sulphuric acid, 1 ounce or q. s. nitric acid, unces ferrocyanide of potassium ; water q.s Dissolve the sulphate of iron in one pint o water, then add the sulphuric acid, and hea the solution to boiling, then pour in th nitric acid in small quantities at a time, con tinuing the boiling until the iron is peroxidi zed. Dissolve the ferrocyanide of potassium in two pints of water, and add the former so lution, when cold, to this. Collect the precipitate that will be formed on a filter, and care fully wash it with distilled water, until the blue precipitate begins to dissolve in the wa ter. It will now be found to be soluble in salt be present. Rub what remains in mor tar with distilled water until a clear solution is obtained of the required intensity of color. A little oxalic acid is sometimes added, bu this is not necessary, if the above instructions be carefully followed, as the precipitate will be perfectly and permanently soluble in pur water.

Fire Arms Differentiy Charged.
Balls which fit accurately the bore of piece, have the greatest effect, as they do no come out so readily but give time for the grea ter quantity of powder to ignite.
When the powder is rammed violently down, its effect is no greater, but somewhat ess than when barely pressed down with th ball upon it.
Gunpowder around a ball diminishes its ef ect, as it expands in all directions, and when it is upon the top of a ball, it must in some measure act counter to its progress.
By taking a ball and putting a little powder under and considerable before it, its effects may be almost nullified, and yet there will be co
ged.

To Stop Horses Suddenly
It is said that horses which run away will stop at once, if there is any thing thrown over their heads, which hinders their seeing. If therefore there can be a screen fixed about the head stall, say of india rubber cloth, which yes when they run away, they will thus at once be stopped. Such an arrangement connected with two small cords to the seat of he carriage to be pulled from within, might e a great safeguard against horses running way, of which there are many good ones that eem to have a passion for it.

colorea

It is said that blood can be prevented from ettling in a bruise, by applying to the place cloth wrung out of very warm water, and renewing it until the pain ceases. The mois ture and heat liquify the blood, and send it ack to the proper channels, which, by neg lect, or the use of cold applications, would
be coagulated, and fixed in green and black blotches directly under the skin.

This engine was invented by an English en ineer named John Evans, of Wallingford, in 1828. It shows how liable practical men are to fall into error as well as mere theorists, and e will never be surprised at this after James Watt, so gifted and eminently scientific, fell into like errors.
This engine is composed of a long cylinder A A, laid horizontally, and divided into tw qual parts by a disk, or broad flanch B, in th interior; in each department is a drum D omposed of two concentric cylinders, cast in one piece, and a channel \mathbf{E}, is formed, exten ding the length of the drum, and reaching from he larger to smaller cylinder, the object of which is stated to be to obtain greater su face. Through these drums passes an axis F, with mall projecting feathers, fitted into corres ponding grooves in the interior cylinder of the rum, which thus comes round the axis. At ached to the periphery of the drum, by a hinge, is a flap or piston G, which is of some what greater diameter than the channel H laft hetween the drum and the exterior cylinder A, and placed immediately over the cleft r channel \mathbf{E}. The drums are pressed against the disk B, by the end plates K, of the same diameter as the cylinder A, and having thei pper surface bevelled round the rim to receive he packing, which is covered by a flat hoop ressed down by a short cylinder L, by screw crewing intothe flanch of A, so that no steam can escape between the drum and the disk B or the end plates K. The drums must be so placed on the shaft F, that when the cleft E Fig. 55

f one drum is on the highest part of the shaft that on the other drum shall be on the lowest part of the shaft. Along the upper side of the ylinder A, is fixed a groove, through which escends a stout shutter, on to the drum or butment M, faced with brass, and having bove it a packing of hemp \mathbf{N}, covered with a plate of metal, pressed down by the screws O The steam is admitted by a steam pipe P, ino the steam box Q, (of which there are two ne to each drum,) furnished with a slide valve R, regulated by an eccentric on the axis; S is the eduction pipe. The steam being admitted into one compartment, acts agains the shutter M , and the piston G , and cause the drum and shaft to revolve; when, by the evolution of the drum, the piston of the oth r drum is carried past the aperture in the team box G, the steam is admitted to it, and hut off from the first compartment, and the revolution of the shaft is thus continued, by the admission of steam into each compartment
alternately, during half a revolution. The eduction pipe may communicate elther with the condenser or the atmosphere.
The steam acting as proposed by Mr. Evans can have no tendeacy to force the piston either way.
urious mode of Grafting the Grape Vine. A gentleman in the neighborhood of Opor(o, split a vine shoot (white grapes,) very carefully down the middle, cutting the bud in half, and then split a corresponding shoot on a black vine, and united them as in common grafting, and, after many experiments, suc. ceeded in making the graft grow, and the produce of the vine was white and black fruit on the same bunch.

Repulsion.-Steel and Water.
Dr. Dalton, in his philosophical experiments, says, " if a blade of a well polished knife be dipped into a basin of cold water, the particles of each of those two bodies do not seem to come in contact with each other ; for when the blade is taken out, the water slides off, leaving the blade quitedry, as if it had previously been smeared with any greasy substance.
In the same way, if a common sewing neede be laid horizontally on a glass of water, it will not sink, but form a kind of trench on the surface on which it lies and fioats about. This proceeds from the little attraction which exists between the cold water and the polished steel. It is necessary that both the knife, in the last experiment, and also the needle, should be dry and clean; otherwise, the efect will not be produced.

LITERARY NOTICES.

Holden's Dollar Magazine for April, has made its appearance. It contains a portrait of Washington Irving and his "Sunny Side"
on the banks of the Hudson. A view on the on the banks of the Hudson. A view on the river Stour in Eisgland, and the scene of an encampment in the Sacramento valley, which some of the participants; the artist has executed faithfully our idea of being far away from "Home Sweet Home." Holden is cheap at a dollar.
Neal's Gazette, published in Philadelphia has been considerably enlarged and makes a beautiful aprearance. It is an excellent pa. ber.

H E B EST Mechanical Paper IN THE WORLD ! fourth year of the

SCIENTIFIC AMERICAN : 416 Pages of most valuable information, illustrate
with upwards of 500 MECHANICAL ENGRAVINGS: th The Scientific American differs entirely from
the magazines and papers which fiood tne country, me magazines and papers which fiood tre country,
as it is Weekly Journal of Art, Science and Me. chanics, having for its object the advaneement of
the INTERESTSF MECHANICS, MANUFAC.
TURERS and INVENTERS NEAS
Tustrated with from fivers Each number is il.

 all Einds of MACHINERY, TOOLS, \&cc. \&cc.
It is printed with clear type on beatiful pa-
per, and leing adapte to binding, the subscriber
is possessed, at the end of the year, of a large vol.
ume of 416 pages. illustrated with upwards of 500 ume of 416 pages. illustra
mechanical engravings.

All Letters must be Post Paid. CLUBBING.

Southern and Western Money taken at par for sub
criptions. Post Office Stamps taken at their full A SPLENDID PRESENT:
To any person whe will send us Three Subscri-
bers, we will present a copy of the PATENT LAFs op
 ul
\qquad
\qquad
\qquad Seientific Am ericican. It It Will be an easy matter to

