

Manufacture or Good Crucibles.
Tbis is a branch of the potter's art requiring reat care to insure success, and bas general is been considered a very uncertain process. A good crucible is requiren to stand the greatest heats and to withstand the corrosive effects of any substance ignited in them, also to to stand sudden changes of the temperature Good crucibles must be composed of a mate ial sufficiently solid in its texture, to preven the passage of the fluid metal through its pores, The composition producing pots of the best quality, is formed by pure fire clay, mixed with finely ground cement of old crucibles, to which is added a portion of black k_{1} lead or plum which is added a portion of black, lead or plum-
bago. The clay is prepared in the same manner as observed in pottery generally; the ves sels after being worked to the proper conical shape, are slowly dried and thea baked in kiln. The composition used in the Royal Foundry of Berlin, is formed of 8 parts in bulk, of Stourbridge clay and cement, 5 of coke, and of graphite or plumbago. Crucibles manufactured from this mixture are capable of with standing the greatest possible heat, in which wrought iron melts, being equal to from 150 to 155° Wedgewood: they also bear sudde cooling without crackiag. In the Berlin Foun dry they have been employed for 23 consecu tive meltings of 76 lbs . of iron each, which perhaps is the most complete and trying tes that could be adopted.
Another composition is as follows ;-8 lbs. Stourbridge clay: 4 lbs . burned clay cement; 2 lbs . coke powder, and 2 lbs . pipe clay ; the whole being compressed in moulds whilst in a pasty state.
Mr. Anstey's patent process for the manu facture of crucibles, is as follows:-Two part of finety groundraw fourbridgootayrendame erised, and sifted through a siere of 1.8 t inch mesh, are mixed well together with water. This mixture is moulded on a revolving wooden block, somewhatsimilar to the process pursued in pot throwing, a guage being used to regulate the thickness of the pot, and a cap of linen placed upon the core previous to the application of the clay, in order to prevent its ad hering when removed. The pot is then drie in a gentle heat and is not thoroughly comple ted until required for use. It is then warmed before a fire, and laid in the furnace, with the mouth downwards, the heat of the fire having been previously lowered by the application of fresh coke. The furnace is then filled with coke sufficiently high to cover the crucible, when it is gradually brought up to a red heatWhen this is the case, it is reversed, and fix ed in its proper position in the furnace, with out being allowed to cool. The charge of metal is then put into the crucible, and three sse fous hasge pieces of coke are placed across the mouth of the pot, the tile or lid is then put down, and the draught of the furnace adjusted to heat the metal quickly.

Brilliant Whitewash.

Many have heard of the brilliant stucco whitessasb on the east evd of the President's house at Washington. The following is a receipt, fur making it, as gleaned from the National Intelligencer, with some additiona mprovements learned by experiment:
Take a half bushel of nice unslacked lime slake it with boiling water and cover it during the process to keep in the steam. Strain the liquid through a fine sieve or strainer, and add to it a peck of clean salt, previously well dissolved in warm water: three pounds ground rice, boiled to thin paste, and stirred in boiling hot; half a pound of powdered Spanish whiting, and a pound of clean glue, which has been previously dissolved by first soaking it well, and then hanging it over a close fire in a small kettle within a large one filled with water. Add five gallons of hot water to the whole mixture; stir it well and let it stand a few days covered from the dirt. It should be put on right hot; for this purpose, it can be
kept in a kettle on a portable furnace. It is said that about one pint of this mixture will said that about one pint of this mixture will
cover a square yard upon the outside of a house if properly applied.
Brushes more or less small may be used according to the neatness of the job required. It answers as well as oil paint for wood, brick or stone, and 18 cheaper. It retains its briliancy for many years. There is nothing of the kind, that will compare with it, eithe or inside or outside walls.
Spanish-brown stirred in will make red or pink more or less deep according to the quanity. A delicate tinge of this is very pretty or inside walls. Finely pulverised commo lay, well mixed with Spanish-brown befor it is stired into the mixture, makes a lilac coor, very suitable for the outside of the build ings. Lamp-black and Spanish-brown mixe logether taake a reddish stone color. Yellow ochre stirred in makes a yellow wash ; but chrome goes farther, and makes a color gen rally esteemed prettier. In all these cases, the darkness of the shade of course is dete mined by the quantity of coloring used
When walls have been badly smoked, an you wish to have them a clean white, it will do to squeeze indigo plentifully through a bag into the water you use, before it is stirred in he whole mixture
If a larger quantity than five gallonsis wan ed the same proportions should be observed. [The above receipt we have noticed before (last jear) but as the season is approaching when walls, fences, \&cc. will look and feel al the better of a new coat, we must recommen ome of its features to the attention of house wives and husbands. But first we must say hat those who use hot lime will find that it soon destroys brushes. The rice paste is the best that can be used. Don't use much glue as it is apt to make the lime scale off. No person need expect any lime wash to be as good as oil paint-that is all nonsense. There are but few coloring matters that look wel mixed with lime. Chrome certainly does not. It loses its yellow color and becomes a dirty orange. A litter of the sulphate of iron, mix-
or-the iron scales around a blacksmith's forge answer the same purpose. We prefe to use the lime without any coloring matter in it except a little indigo. Those who use whiting for the ceilings of papered room hould mix a little indigo with it.

Leavened Bread.

The perfection of fermented bread consist first in its exhibition when the loaf is cut hrough, a pile of air cells gradually increas ing in size as they approach the top of the oaf. Secondly, the middle of the loaf should be as dry as the part next the crust and no rumble when cut.
Bread undergoes a great change soon after it is baked. Ne person can eat as much old as new bread, and this shows that it absorbs nutriment from the atmosphere? What is this nutriment? Nitrogen undoubtedly. Car bonic acid is driven off in the baking and this is what makes the numerous cells in the bread. It is the same with charcoal. Well, a cubic inch of chreoarl, with its aumerous munte cells, possesses; strange as it may seem, at the lowest computation, a surface of one hundred square feet. Charcoal has the property of absorbing the gasesto a wonderful degree, and bread has the same property. But it is just as ready to absorb a hurtful as a wholesome ad airy situation, not in a damp cellar or close pantry. Warm bread is not esteemed oo wholesome as bread that has been baked 24 hours, and although people can eat more at a meal of the former, yet the next meal does not find the appetite in so healthy a tone a after taking the previous meal of old bread.

Durablitty or Cedar.

At the head of one of the graves in the buial ground " Old St. Mary's," Md, there tands a cedar slab which, as the inscription ndicates, was placed there in the year 1718 Notwithstanding it has been exposed to the weather for so long a period, it is still per ectly sound ; and if unmolested by desecraing hands, it will doubtless be standing when every man wozann and child that moves upon the earth, shall have gone down to "darkness and the worm."

History of the Rotary Engine.
Prepared expressly for the Scientific American.
steenstrup's rotary engine.

This is a vertical section of Paul Steen strup's engine, invented in 1828, and it is strange looking affair, yet not so curious or impracticable as to induce us to believe that only one man could conceive such an idea.In 1847 a rotary engine nearly the same in al respects, was exhibited in New York. It is rue that it was universally acknowledged to be a poor one, but still it showed that there are " many men of not many minds."
A, is a section of a cylinder accurately turn ed and bolted at each end to a plate B, which is ground perfectly flat. C, is a smaller cyinder, to which is attached a rectangular pis on D. E, is the shaft secured by screws to he small cylinders and turning in stuffing ooxes. F, is a slide moving in circular groove cut in each end piece of the cylinder and in steam tight box. H, is a lever connected by earing to the shaft of the engine and serving to draw up the slide into the box, in order to allow the piston to pass. The slides are perions of a circle, of which the axis of the le ver H, is the centre. K, is the steam valv and L, the exhaust valve.
Operation.-The slide F, being down,
piston in the position shown in the drawing the steam is admitted by the valve K , which mpels the piston in the direction of the arow. When the piston comesnear to the ex haust opening L, the stean is cut off and the piston is carried past the passage by a fly wheel (for it needs one too) on the shaft of the engine-the slide being previously raised nto the box, to allow the piston to pass. When the piston has passed, the steam is readmitted and the same operation continued.With an engine that does not need to be reversed, only one slide and one steam valve is ecessary, but when it is wanted to be rever sed, the two slides are required.

Dlamond and Coks.

In 1847 M. Jacquelain of Paris, succeeded in converting diansond into a substance possessing the appearance, physical character, and electrical properties of coke by the following process :-Having attached a piece of hard gas retort carbon to the positive wire of Budson' buthery of 108 eleimeuba, de pleced on it a small piece of diamond. He then armed the negative wire with a cone of the same carbon, and, by dexterous manipulation, enveloped the diamond with electric flame. After a short interval, the diamond underwent a sort of ebullition, became disintegrated, softned, and was actually coke.
Professor Farraday in commenting on the above before the Royal Society alluded to the case of sulphup, which becomes brittle when uddenly cooled from its first state of fusion, but is soft and pliable when similarly cooled from its second state of fusion. He also showed by experiment that diamond could be burned into carbonic acid gas by means of a curent of oxygen gas directed on it when high y heated, but neither this heat nor any shor of that of the voltaic battery, except that of he solar lens, was sufficient to convert dia mond into coke. The voltaic arc was the
most beautiful and powerful furnace. Crystal rock might be fused by a current of oxygen sent through an ether flame. This powerful heat was inferior in intensity to that of the battery.
When a diamond is converted into coke it
loses . 689 of its specific gravity, which is 3 . loses . 689 of its specific gravity, w
368 -and also its insulating power.

Simple Remedy For Burns.
An esteemed lady friend sends us the following "remedy for the roost painful burns," which, " if applied immediately, affords almost instant relief." She says: It consists of equal parts of linseed oil and lime mixed logether. It must be wellshaken before using and poured over an even piece of raw cotton and applied to the sore. It may be renewed two or three times a day. This remedy is valuable to families, and so simple that it is with in the reach of every one. She has seen almost immediate relief derived from the application of this mixture to the most painful and serious burns, which, without it, might possibly have become wide spread, tedious and expensive wounds
We copy the above from the Baltimore Sun o endorse its truth. The lime water and the oil makes a beautiful white salve, personally tried some years ago, with satisfaction.

Universal Cement.

Curdle skimmed milk, then collect the curd press out the whey, break the curd into small pieces, dry by the heat of a water bath and reduce it to a fine powder. To ten ounces of this powder add one ounce of finely powdered quicklime and two scruples of camphor.Mix them well together, and keep the mixture in closely stoppered bottles. When it is wanted to be used, a portion of this powder is to be mixed with a little water, so as to form a paste, which is to be applied quickly. This cement may be used for almost every thing in the shape of fine work.

kconomical Halr Wash.

Takeone ounce ot borax, half an ounce of camphor ; powder these ingredients 6 ine, and dissolve them in one quart of boiling water; when cool, the solution will be ready for use -damp the hair frequently. This wash not only effectually cleanses and beautifies, but strengthens the hair, preserves the color, and prevents early baldness. This, we conceive, cannot be too generally made known.
 brass work, first wetted with a strong solution of a mmoniac makes an excellent joint, care being taken not to use too much heat.

SCIENTIFIC AMERICAN ! 416 Pages of most valuable inform

500 MECHANICAL ENGRAVINGS: 86-The Scientafic American differs entirels㐿-The Scientric American differs entirely from he magazines and papers which flood tne country,
 INGS OF NEW MECHANICALINVENTIONS
 American. It alsocontainga Weekly List of Amper-
iccan Patents; notices of the progreese ofall Meobas.
ical and Scientific Improvements ical and Scientifc Improvements ; practical direc
tions on the construction, management and use of
ill kinds of MACH
 is possessed, at the end of the year, the subscriber large vol.
ume of 416 pages, illustrated with nopmard of 600 TERMS: Single subscription, $\$ 2$ a year in ad ance; \$1 for six months. Those who wish to sub. Publishers of the Bcientific American,
128 Fulton UCEM must be Post Paid. CLUBBING.

 A SPLENDID PRESENT To any person whe will send us Three Subscri
bers, we will presenta copy of the patert laws op bers,
THE
tion $\frac{1}{\text { fu }} \mathrm{k}$
\qquad ed

