

For the Scientific American.
Polsonous metals.--Liquid Tents of Arse-
nile.
In all medical examinations connected with lezal inquiries a preliminary experiment i performed with distilled water, and hydrochloric acid is used to resolve the arsenic, after which the slip of copper foil is introduced It is a fact, says Noad, of especial importance in a medico legal point of view that a person may have died from the effects of poison and yet not a trace of it be discovered in the stomach or its contents In such cases where suspicion exists, some of the solid parts of the body, such as the liver and the blood, will have to be examined, and the best manner of preparing these substances for test is described by Fresenius, which is to digest the orga. nic substances in a water bath with an equal weight of concentrated hydrachloric acid and as much water as will give the whole a thin consistence. Chlorate of potassa is then added, in portions of about half a drachm a intervals of about five minutes until the con tents have assumed a bright yellow color perfectly wixed, and of a thin liquid appear ance. Whea this is attained about 3 drachms more of the chlorate of potassa is then added to the mixture and the basin is taen removed from the water bath. Whencoul, it is filter ed and the residue washed. This filtrate is then concentrated to about a prat and a quantity of sulphurous acid added to reduce the arsenic acid to areenious ac id to make it more easily precipitated by sulphuretted hydrogen. The excess of sulphurous acid is then driven off by heat, and the tuid expdsed to a slow stream of sulphuretted hydrogen gas for about 12 bours. The silphuret of arsenic thus obtained is washed and treated milh fuming ni, tric acid evaporated to dryness, moistene with pure sulphuric acid and then gently heated, first on the water bath and aflerwards at a higher temperature of about 300 degrees, until the mass hegins to crumble. The residue is then treated with boiling water, then filtered, and the clear fluid after being again acidrged with hydrochloric acid is again precipitated with sulphuretted hydrogen gas.The pure sulphuret of arsenic thus obtained is mixed with the carbonate of soda and cyanide of potassium, then mixed with charcoa dust and reduced in a tube, when the metal volatizes and condenses on the cool part of the tube, as has been described in a former ar ticle.

All nitrates and various salts of mercury and other metals render the separation of ar senic from a solution, by a copper fuil being boiled is said solution, to precipitate the ar senic on the copper-very dificult, next to impossible, and in such cases, the liquid tes of Fresinius already described, is the best. I would be well tor those who desire a more elaborate treatise to consult the late worksof Freseniusand Dr. Turner and M. Rose.
Many mas think it morally impossible that a person can be porsoned by arsenic, and the stomach exhibit no traces of the poison at the same time. Yet it is a fact. About 16 years ago there was a very fashionable color called sage green employed in the manufacture of cotton ginghams. It was principally dyed in the cities of Manchester and Glasgow in Britain, and dyed in the yarn. Arsenious acid dissolved by boiling in water, and the sulphate of copper, precipitated by caustic lye, were the ingredients employed indyeing this beautiful green color. The precipitate of these ingredients absorbed by the cotton yarn was so fine and powdery and adhered to the fibres sotenaciously, that it was next toimpossible to remore the dust by washing it water. Owing tothis wben the minders (most. Iy old women) were winding the yarn on pirns or bobbins, a great deal of this ine dust was thrown off in the operation and many fell a sacrifice ignorantly to this poison in toiling for their daily bread. A number of weavers
too, had their health seriously injured while weaving the yarn, and it was noticed that no weaving such as canaries, could live in the houses where the garn was wound from the skeins into bobbins. In every shape it is a dangerous poison, and yet as a pure metal it is said to be barmless and only virulent as an oxide. It was asserted by Orfila that arsenic sometimes existed naturally in the human body, but this was a grave error,-it may exist naturally in the poison of snakes and the effluvia of mad animals, but certainly in no other manner ia animated nature that we can conjecture.

To Wash Iron with Gold.

It 18 said that it sulphuric ether is mixed with the mitro muriate of gold, that the gold will combine with the ether, and become seperate from the acid. By taking a camel hiir pencil aud writing with the ether gold solution on bright steel and then planying it in cold water, the steel will be coated, where wrote upon, with gold. The steel is afterwards to be heated to as bigh a degree as possib'e without clianging the color, when the gold may be burnished.

History of the Rotary Engine.

Prepared expressly for the Scientific Ame witty's rotary engine.
This is a rotative eagine invented and pa tented in 1810 by Mr R. Witty of Hull, Eng land and described by Galloway and is a sub stitute merely for the crank-the great object of all rotary engines.

Fig. 39.

A, Fig. 39, is the cylinder, shorfer and wider, than fixed cylinders, with its piston B, the rod of which works air-tight through the stuffing boxes $a a$, at each end of the cylinder, with a provision at W to blow the air and water at starting when required. The axis or shaft, C C, is fastened at right angles to the cylinder, with screw bolts ihrough flanch I In the axis arecast or bored two ducts or chanels, E F, of sufficient capacity to admit steam o supply the cylinder. The ends of these ducts are securely plugged up. The side pipes, t and g, are joined to the sides of the axis, and communicate separately with the ducts $E F$, in such a manner that the pipe h shal communicate with the duct E, and the pipe g with the cylinder. D D, is the concentric collar, through which the taper part of the xis works air-tight; to this collar are screw ed the steam pipe E and eduction pipe F; the

former leading from the boiler, and the latter to the condenser and exhausting pump. The two holes in the collar, where the too pipes are joined, are made in the form of a parallelogram, so that when the cylinder, side pipes, and shaft, turn round through the collar D D the communications betwixt the boiler and cylinder, and the cylinder and condenser, will be
open alternately during half the revolution, ard each side of the jiston will be open, or exposed alternately to the steam and the condenser.

Fig, 40 represerts what is called the cardioid motion, attached to the engine. It con8ısts of a parallelogram, frame, or trammel groove, joined to the piston rod by the two triangles M M, M M. The two friction wheels, $\mathrm{N} N$, are hung betwixt the ends of these triangles, and the piston-rod and rim betwixt the side joints 0000 , cast or screwed upon the covers of the cylinder. At a distance of half the stroke of the piston from the centre of the cylinder shaft is fixed a strong stud or pin, having a strong knee crank, at right angles from it, to suppart the gudgeon end of the cylinder shaft at S. On the round part of this stud runs a wheel P , filling the trammel groove, and the square is driven tight into another piece of cast-irons aud keyed fast, and this is bolted down to a beam of wood, as at K, Fig 41. When the steamis admitted under the piston the trammel groove moves with the piston rod, and is turned from a rectilinear to a rotary direction by the stud P, resisting on one side of the trammel, andcauses the cylinder to revolve towards the stud, and as it revolves the groove comes perpendicular, or at right angles to the situation in which it is seen in the figure, the cylinder lays horizontal, the piston is at the extremity of its stroke, and the alternations of the steam take place at that instant in the axis. n this position the engine may be said to be passing centres, similar to that of a beam engine, when passing the vertical position of the crank; and thus a continued revolving of the cylinder is effected, while its piston describes circle, the diameter of which is half the length of the stroke.
Fig. 41 is a contrivance for applying the orce of the piston upon a wheel R, or crank, which revolves upon a separate axis at W, placed halfthe length of the stroke of the piston from the centre of the cylinder shaft X, which is supported by a kneefrom or through the centre of the wheel, similar to the contrivance for supporting the gudgeon of the cylinder, Fig. 40. The diameter of the wheel is made equal tothe length of the piston rod Z; and has its rim made to incline or project, in order that the piston rod may lay hold of it alternately at the stops Y Y.

Chemical Affinity-Definite Proportions. A remarkable fact relative to chemical affnity is, that the quantity of any substance required to form a particular compound is al. ways the same; and so long as a body retains its general characteristics, it will always consist of the same elements, united together in the same proportions. For instance sulphuric acid (oil of vitriol) is always composed of 16 parts, by weight, of sulphur, and 24 of oxygen. No other substances can form sulphuric acid, nor can its own elements produce it, if combined in any other proportions than those just stated. Water, in like manner, is formed of one part, by weight, of hydrogen, and eight of oxygen; and were these elements to unite in any other proportions, some new substance, different from water would be produced. When two or more elements unite to form a compound, the addition or diminution of a small quantity of one, often produces an effect renarkably different to w hat would have resulted, had the proportious been different. For instance, there is great dissimilarity, both in taste and appearance, between starch and sugar; and yet they are composed of the same elements, and versnearly in the same propor-
tions, as will be seen by the following analy$\begin{array}{lccr}\text { sis :- } & \text { Oxy. } & \text { Hy. } & \text { Car. } \\ \text { Sugar is composed of } & 40 & 5 & 36\end{array}$ $\begin{array}{llll}\text { Starch } & 48 & 13 & 42\end{array}$ The figures represent the parts of each element, by weight, that form the two substances; so that it will be seem, it is only in consequence of the starch containing a few more particles of its elements than the sugar does, that it differs so materially in its sensitle qualities. If we could abstract a few atoms only of the oxygen, hydrogen, and carbon, from the starch, we should cosvert it into sugar! and in some chemical processes this is really effected. It is in consequence of the beautiful law of nature we have been describing, that chemists are able to tell exactly how much of any substance is contained in any particular compound; for the quantity is always the same, and when it bas been once ascertained, it is known always. For instarice, sulphate of magnesia is formed of sulphuric acid and magnesia. If the latter be added to the acid till effervescence ceases, it will be found, that any magnesia thrown into the solution afterwards will not combine with the acid, but will fall to the bottom of the vessel; thereby showing that only a certain quantity of magnesta will combine with the acid, to form good Epsom salts.

To Make a Gold Powder

Dissolve gold in aqua regia, or 2 parts nitric and 1 of muriatic acid. The leaf gold is best to use for this purpose. Then take cot. ton and soak up all the nitro muriate of gold, suffer it to dry and afterwards burn it on a saucer. Take up the ashes of the cetton and wash then, allowing the water to settle before pouring off, when a fine gold powder will be foundat the bottom of the saucer, which must be dried and can be used afterwards in the arts, such as or nament for leather or paper.

Glass may be drilled like metal by keeping he instrument (a common iron drill) moist with a solution of camphor in turpentine.

Dr. Graves in his Clinical Lectures states, as a very remarkable circumstance, that fe males are but rarely affected with the defect of stammering.

H E BEST Mechanical Paper IN THE WORLD! fourth year of the

SCIENTIFIC AMERICAN! 16 Pages of most valuable information, illustrat with upwards of
500 mechanical Engravinge $10 G^{-T h e}$ Scientific American differs entirely from he magazines and papers which fiood the country, as it is a Weekly Journal of Art, Science and Me:
chanics, having for its object the advancenent of the INTERESTS OF MECHANIISS, MANUFAC
TURERS and INVENTORS Each number is ilIustrated with from five to TEN original ENGRA-
VINGS OF NEW MECHANICAL NVENTIONS nearly all ofthe best inventions which are patented
at Washington being illustrated in the Scientric at Washington being illustrated in the Scientanc
Ammerican. It also contains a Weekly List of Amer.
ican Patents; notices of the progress of all MechanAmerican.
ican Patents; notices of the progress of all Mechan-
ical and Sclentic Improvements; practical direc
tions on
 It is printed with clear 'type on bbautiful pa-
per, and leing addapted to binding, the subscriber
is possessed, at the end of the year, ofa large vol. per, and being adapted to binding, the subscriber
is possessed, at the end of the year, or alarge vol-
ume of 416 pages, illustrated with upwards of 500 mechanical engravings.
TERMS: single sub
TERMS: Single subscription, \$2 a year in ad
vance; \$1 for sis months., Those who wish to sub. scribe have only to enclose the amount in a lotter
directed to Publishers ofthe Scientific American,
128 Fulton street, New York. All Letters must be f'ost Paid
INDUCEMENTS FOR CLUBBING.

Southein and Western Money taken at par for sub scriptions. Post Ofice Stamps taken at their fut To any person whe will send To any person whe will send us Three Subscri-
bers, we will present a copy of the patent THE UNITED STATEs, together with all the information relative to PATENT OFFICF BUSINESB, including full directions for taking out Patents, method of making the Specifications, Claims, Drawings, Models,
buying, selling, and tranfering Patent Rights \&c.
This is a presentof $\operatorname{lrest~valuE,~yet~may~be~obtain.~}$ This in, a presentof GREATvALUE, yet may be obtan:
ed for nothing, by the reader of this prospectus, if h. ed for nothing, by the reader of this prospectus, if he
wilt take the troule to get Threesubscriberstothe
Scientife will take the trouble to get Three Subscribers tothe
Scientific American. It will be an easy mater to obtaintwo names besides his own.
RUNN \& CO., Scientific American Office, N. Y

