For the Scientific American.
Light and the Fuman Eye.
There are various theories regarding the precise character of light. By some it is described " as very minute particies thrown off in all directions with immense velecity from luminous bodies" O!hers consider it as the effect of an undulation produced by luminous bodies in the elastic medium of the atmos phere, and producing an effect upon our or gans of sight like sound on the air by yibra tions of the atmosphere.
The former theory of material particles is called the theory of emission, the latter the undulatory theory.
Our opinton is in favor of the two theories combined, namely, that light is thrown off luminous bodies in all directions with great velocity and by a vibration. Whatever may be the absolute nature of light, we cannot tell, for we cannot handle it to dissect its anatomical structure. It is too subtle for the crucible of the chemist and the philosopher only knows that it is a remarkalle property of luminous bodies that it enables us to perceive luminous objects themselves as well as other objects and that its absence produces darkness. All visible bodies may be divided into two classes, the self luminous, and the mon-luminous. The former class possess in themselves the property of exciting the sensation of light ; among these may be mentioned the sun in the heavens and phosphorescent bodies on the earth. The non-luminous bo dies, although they may not emit light, yet they may possess the remarkable property of reflecting it and communicate the original emitted ray to a third, and so on. In ancient times it was b lieved that light was propagated from the sun and other luminous bodies instantaneously, but it has been discovered that although its velocity is great, yet it takes time to travel. It travels at the rate of 200 ,000 miles in one second. It proceeds in a direct line from the luminous body which producesii, and owing to this fact, all shadows are observed behind opaque objects and this is what makes the night season, for during that period weare in the shadow of our own world and this shadow reaches so far into space,
that when the moon plunges into it in her that when the moon plunges into it in her
course she undergoes what is called an eclipse. An eclipse of the moon is simply the shadow of the earth thrown so far into space as to darken for a brief period to us the face of the satellite.
As light advances from a candle or gas light it diminishes im intensity, and this diminution increases to the square of the distance at the rate of $4 \mathrm{X}_{4}=16$. In other words, if it would take the condensed light of four candles to reach one mile it would take the condensed lignt of 16 candles to reach 2 miles, but we must remember that as we lose the
intensity of the ray, it fills a wider space.Any parcel of rays passing from a point, is called a pencil of rays. An optical medium is a transparent body like glass. When rays of light are passing from one body to another of different density, they are bent from their former course and are said to be refracted. A ray of light which strikes the surface ot a body and is thrown back again from the said glass is a reflector, and here let us mention a commen error respecting the looking glass. When we look on a mirror, we behuld a facsimilie of ourselves. Now it is a popular error to suppose that our image has been in or that we see it on the mirror. The image never existed on the mirror and could not. The mirror simply throws back the reflected rays of light from our body upon the retina of the eye and the image is conveyed from thence by the optic nerve to the brain, or seat of sensa tion. Another popular error is, to suppose that the mirror turns about our image and shows us a left hand for a right one. In appearance this is the case, but this is an optical illusion. The hand which appears in contradistinction to our good right hand, to be our left in the looking glass, is still our right hand. When we move our right hand, the hand opposite to it the in glass (apparently the letthand) moves likewise. I have explained this optical illusion, because I once remember to have seen a philosopher nailed to the dilemma of not being able to tell the reason,
" why a looking glass turned round about the image of a person looking therein." He had not previously thought of this, or he would have said that " the image was not turned a all, or else the right hand in the looking glass would optically have appeared os the right hand of the person looking therein." It is upon a knowledge of the refraction and reflection of light, that all those instruments are constructed, which nay be said to have brought heaven down to earth. The human eye is an optical instrument of rare and wen-
derful powers, and a brief descaiption of it derful powers, and a brief descaiption of it will not be uninteresting.
The eve is composed of three membranes and three chambers filled with humors. The outer membrane is named the schlerotic. It is thick, firm and white, except its anterior portion called the cornea, which is set in the opaque portion like a watch glass in its rim The outer coat is lined with a thindark membrane named the choroid, which is brown in ome people and blue in others. That part which is seen and gives color to the eye is called the iris, and it has an opening in the centre called the pupil, which readily conracts or dilates according as more or less ight is desired. In this respect the natural elescope surpasses all those formed by art.The pupil of the eye is round in man and elongated sidewise in a sheep, while vertically it is an oval in a cat. The inner and hird membrane of the eye is called the retina and this is formed by the optic nerve which nters the back part of the eye through the schlerotic and choroid coats and expands up on the interior into a whitish and most deli cate membrane. It is upon the retina that the images of objects are received and produce impressions which are conveyed to the brain by the optic nerve. How this is done no man can tell-it is an action which pro claims man to be fearfully and wonderfully made. The fuids which occupy the cavities of the eye are of differentdensities. The ca ity in front of the pupil and behind the cho oid, is a clear watery liquid named the ac ueous humor, and the chamberinside is fil ed with the vitreous humor. Behind the pu. pil there is what is called the chrystaline lens a spherodical body, firm, transparent and composed of a number of layers. This apparatus of the eye is to receive the rays of light which diverge from different points and to bring them to a point again upon the retina There is one thing curious about the eye, namely, that the image formed upon the eye is inverted, which can be proved by the transparent eye of a white rabbit soon after it is dead, which if we place in a tube with the cornea outwards and look through the other end, we will see objects pictured upon its etina but in a reversed position. Some philosuphers have contended that we perceive
objects in this manner, but there can be no doubt about the optic nerve conveying the right pocition as well as the form of objects to the mind.
In man the eye performs a more exalted of fice than thatof mere vision-it is the window of his soul. From the inmost recesses of the heart, we may behold looking out there, 'f ear, hope, disdain, revenge and love in every shape." What inspiration is displayed in its construction-what a wisdom and divinity in the offices it performs.
R. M.

The Coast Survey.

From the Report of Prof. Bache, Superin tendent of the Coast Survey, we gather the subjoined results of the last four years labors. The work has been carried into every State on the Atlantic and the Gulf of Mexico, with one exception, and surveying parties are now on their way to the Pacific Coast.
The differences of longitude of New York and Cambridge, New York and Philadelphia, and Philadelphia and Washington, have been ascertained by telegraph. The primary reconhaisance and triangulation have been carried from the southwest part of Rhode Island in to Manne. A base line of verification, of ele ven miles in length, has been measured. The topography has been carried from Point Judith o Cape Cod, and has included the shores of Toston harbor and its approaches.
The map of New York bay and harbor and
its environs, in six sheets, and the smaller
map in one sheet, havebeen published. Five charts of harbors of refuge \&c. in Long Island Sound, have been published. One large sheet of the chart of Long Island Sound has been published, and another is well advanced towards completion. The complete chart of Delaware bay and river, in three sheets, has been published. The off-shore chart, from Cape May to Puint Judith, is nearly completed. One sheet of the south side of Long Island delayed for work of rerification, is neary completed.
The primary uiaugulation has been exten ded across from the Delaware to the Chesa peake, and down the bay to the Virginia lise The triagulation of all the rivers emptying into the Chesapeake, north of the Pataxent, and part of the Patuxent has been made. The riangulation has extended over Albemarle, Croatan and Roanoke Sounds. The trianguation of the rivers emptying into the north and south sides of Albemarle Sound has been made, and the topography of the shores (with one exception) and of the Sound, has been completed.
A general reconnaisance has been made of he coast of South Carolina and Georgia. Also a part of the coast of Florida. A complete econnaisance has been made of the coast of Alabama, Mississippi, and part of Louisiana. The topography of the shores of Mississippi Sound, as far West as Pascagoula, is comSound, as far West as Pascagoula, is com-
plete, and of Dauphin Petit Bois, Round, Ship and Cat Islands. The hvdrography of the en trance to Mobile Bay, and Cat and Ship Isand Harbors, and therr approaches, and of part of Mississippi Sound is complete. The computations and reductions have been kept up, and charts of the entrance to Mobile Bay and of Cat and Ship Island Harbors are in preparation.
During this period, an area of 17,554 square miles has been triangulated; the topographic urveys with the plane table have covered 2,318 square miles, and embraced an extent of hore line, roads, \&c. ot 7,179 miles. The hy drography has covered an area of $20,086 \mathrm{sq}$ miles, of which 16,824 were principally off shore, or deep sea work. Four thousald four
have been distributed to literary and scientific institutions in our country, and to department of our own and Foreign Governments. In the stimates for the next fiscal year, the total sum asked is 带18 18,000 .
Curlous Remintscence of Callf ornia.
Capt. George Shelvocke, in his account o he adventures of the "Speedwell," a ship of 24 guns and 106 men, fitted out by certan merchants in London, for a cruise in the South seas, that sailed from Plymouth, February 13, 799, in company with the "Success," under the command of Captain John Clipperton, ays he visited the peninsula of California which he thus described:
The eastern coast of that part of California which I had a sight of, appears to be mounta neous, barren, and sandy, and very like some parts of Peru; but, nevertheless the soil about Puerto Seguro, and (very likely) in most of the valleys, is a rich black mould; which, as you turn it fresh up to the sun, appears as if intermingled with gold dust; some of which we endeavoured to wash and purity from the dirt; but though we were a little prejudiced against the thought, that this metal should be so promiscuously and universally mingled with common earth, yet we endeavoured to cleans and wash the earth from some of it; and the more we did, the more it appeared like gold In order to be further satisfied, I brought away ome of it, which we lost in our confusion a China. But, be that as it will, it is very probable that this country abounds in metals of all sorts, though the inhabitants had no uten sils or ornaments of any metals whatever which is no wonder, since they are so perfect ly ignorant in all arts.

Pubitc Librarles.
The United States contains 182 public iiraries. The aggregate number of volumes in hese libraries is $1,294,000$. In the number f $\psi u b l i c$ libraries, France is the only country in the world which excels us. She has 841.
In the aggregate number of volumes Germany has five and a half millions, France five Great Britain two and a half, and Russia ont and a quarter millions of volutues.

The Way to Melt theice on the Side

 Walk.Last week a gentleman in the upper part of our goodly city having been informed that salt thrown upon the ice on the sidewalks would rapidly melt it, resolved to rid himself of the annoyance in front of his own dwelling. On reaching home in the evening, after dark, he entered his store room, took a peck measure, and filled it with what he supposed to be fine granular fragments of genuine salt, and without saying anything to the dwellers in the house, slipped out through the area and scattered it freely on the walk, over an extent of ice of some two hundred feet. He retired to rest in excellent humor with himself, calculating upon the agreeaole surprise awaiting the family and domestics when they discovered that the ice was entirely gone from the walk and steps. Judge then of his surprise on being told by one of the domestics, almost as soon as he got down stairs in the morning, that some mischievous persons had been sprinkling rice all over the door steps and the sidewalk," coupled with the domestic's sagacious :emark, that " she only whed the policeman had caught the rascal." The gentleman made no reply, but he came down to business rather earlier than usual that morning, and his fami. y remarked that he must have something on his mind.

A Terribie Case or Surrering.

Mr. Richard Mosher, of Dutchess County, N. Y. has beeu confined to his bed for twenty five years, a victim to disease and intense suffering. During the first year of his attack his knees were dislocated and ossified, and subsequently other joints in his lower limbs were d'awnasunder and ossified. Two years after these disastrous afflictions his pain became less acute, and being naturally industrious and ingenious he commenced making shoes, whips, and such other artıcles as he could, while lying in bed. He thus helped to maintain himself, and for eleven years he continued to work until his arms were dislocated and became ossified. For the last eleven years he has been unable to help himself in the least. His jaws were set some years since, and his teeth have been broken out, that food might be placed in his mouth. The only joints which he is now able to move are the extremes of his index fingers and one or two joints of his toes.

Habit.
Parents should endeavour to form good ha. bits in their children-it makes all difficulties easy Make sobriety, says Lord Brougham a habit, and intemperance will be hateful and hard; make prudence a habit, and reckless profigacy will be as contrary to the nature of the child grown or an adult, as the most atrocious crimes are to any of your lordships. Give a child the habit of sacredly regarding the truth, of caref ully respecting the property of others, of scrupulously abstaining from all acts of imprudence which can involve him in distress, and he will just as likely think of rushing into an element is which he cannot breathe, as of lying, or cheating or selling.
To found these habits in children, however, is no easy task. But there are many men of splendid minds, those livesex hibit great strug. gles to break up and overcome bad habits formed in youth either by parental neglect or indulgence.

Funds for the Pope
It is not improbable that Roman Catholics throughout the world will be called upon to contribute money to relieve the Pope from his present difficulties, and place him in an independent position. Something of this kind is hinted at by Bishop Hughes, of this city, who says: "Sooner than we should see him (the Pope) subject to any Sovereign, or President or petty Prince, or King, we should have recourse to the old institution, and Peter-pence from every point of the compass would constitute a treasury to raise him above that subection, even though he should occupy an island in the Mediterranean Sea a single square mile in extent."

At the late meeting of the Paris Institute, M Bernard and M. Bareswell presented a sample of alcohol which those physiologists had obtained from the fermentation of sugar extracted from the human liver.

