

For the Scientific American No. 16.
There is no doubt but that many persons will consider this new chemical law, as a speculation merely, based entirely upon mental evidence, and that it is theretore of no practical benefit to chemical science. To al! such I would say that they are wrongly impressed and do not understand the subject, since 1 it is based entirely upon certain indisputable facts, which are new to science and of the greatest importance to its advancement. It is in fact of no particular importance whether this principle of aggregation is believed or not, since it will not in the least degree influence the facts upon which it is based. In this respectit is precisely similar to the atomic theory of Dalton which is a speculation based upon the fact, that substances combine with each other in definite and multiple proportions. It matters not, therefore, whether the atomic theory of Dalton is believed or not, the facts upon which it is based are indisputable. In this essay it may be seen that I have introduced the law as developing the facts, in order that both the speculations and the facts maight be the better understood, although I could hage shown the facts as existing independent of any speculation. I ehose rather to combine the two, so that if any one rejects the speculations they must believe the faets. I have not given the facts separate from the speculations and for this reason many may be led to ask, where are the facts ? To answer such an enquiry I will introduce the fellowing examples of isolated facts, the greater part of which I claim as new and of the ut. most importance.
1st. Chlorine, bromine and iodine are nearly similar to each other in thoirchemical proportions.
2d. All the compounds of chlorine, bromine and iodine, which possess similar atomic constitutions, are also nearly similar to each other in their chemical properties.
3d. Chlorine, bromine and iodine, when arranged so that their atomic weights form an increasing series; will possess specific gravities also forming an increasing series.
4th. All compounds of chlorine, bromine and iodine possessing similar atomic constitutions, when arranged so that their atomic weights form an increasing series, will possess specific gravities also forming etther an increasing or decreasing series depending upon the specific gravities of the substances uniting
5th. Chlorine, bromine and iodine and all their compounds possessing similar atomic constitutions when arranged so that their atomic weights form increasing series, will possess borling points invariably forming increasing series.
The above are simply facts and involve ne speculations whatever, and any person who will take the trouble to examine the above facts will find no exceptions. This is not confined to the above example, but extends also to all other classes of substances whatever, which possess similar chemical properties and similar atomic constitutions. It is to be hoped therefore that chemists will take this subject into consideration and test it thorough ly. They may reject the speculations if they choose, but they must admit the facts, which are indisputable.
By collecting the true specific gravities and
boiling points of classified substances, we shall be enabled to discover their respective Laws which govern them, and shall then be enabled to correctly calculate them, without experiment. All will admit that this is desirable, yet it can be accomplished by a very few experiments, which I hope will be instituted for that purpose.

With these remarks I will close the subject teeling colffident that any person who will take the trouble to examine it will be amply repaid by the truth it unfolds.

Bridgeport, Conn.

Making Colors.

We have tested these receipts and found them to be correct and good. They will onlyanswer on wool and silk, or both combined For cashmere delaines they are the grand desideratum. A few French color makers have recently arrived in this country to executethese colors in some of our print works. They are given to our readers as peculiarly valuable for that branch of business. The stuffs will be all the better to be made a little stronger than is defined in the specification. -so we have found in testing them. \$2000 was paid for the receipts about two months ago by an eminent Calico Printıng Establishment near this city

The coloring matters hitherto employed in printing textile fabrics composed of wool, o silk, and of wool and silk combined, are usu ally in the state of extracts which are obtained by aqueous solutions from various kinds of dyewoods, and from other substances, such as orchil, cochineal \&c. and by evaporating more or less, these extracts. But it often oecurs that in using boiling water to extract these coloring matters, several other soluble substances are extracted along with them, so tha when an aqueous solution of any coloring matter is evaporatad, the residum retains a great deal of these extraneous substances, and therefore produces colors, less brilliant than if it were isolated and pure. All aqueous solutions, particularly highly concentrated ones, deposit in the course of time the whole of the coloring matter which is in the state of suspension, and likewise, in the majority of cases, a resinous substance, which has pro bably mixed up with it a portion ofthe coloring matter. And as the concentration or strength of the extract diminishes in proportion as the deposit increases, it follows that the liquor in any two vats must always vary more or less in strength, according as on may have stood longer than the other. Now such differences of intensity cause irregularity in the printing of goods; and there are stil greater differences caused by these extracts not having equal affinities for water, and con sequently some have a greater tendency than others to absorb steam, from which causes combined steam priving (te faportsage), is rendered an operation extremely uncertain in its effects and pery liable to accidents. This process has been known by the name of dry dyeing (teintureseche) which wrongfully im plies that water is not necessary, which however is not the case, for all manufacturers are careful to keep their goods moist which they wish to fix with the colors, either by placing them in a humid atmosphere or by damping them during the process of steamaing, by open ing the steam cock a little at the commence ment of the operation, so that the steam whic escapes may be condensed upon the goods and thereby impart to them the proper degree of humidity. Without these precautions the co lors would be feeble and spotty in appearance, unless, indeed the colors can be previously rendered equally lygrometric, which it is a extremelg difficult thing to effect. If two pieces of the same printing fabric are submitted to the process of steaming, one very dry and the other very damp, the color of the first will be spotted and feeble, while the se cond will be bright and full bodied. Al printed woolen goods, with the exception of those which are printed with colors, which like the French Blue, have a great afinity for water, require in order to fix firmly the color, to have condensed upon them the largest possible quantity of steam, either before or during the process of steaming but without the quantity being so large as to allow of running (coslage) and if it should happen that in the same prece, and by one and the same operation, the color runs in one part, is weak in nother, or is clear and decided in a third, it must arise from the piece not having in all parts an equal affinity for water.
To remedy the various inconveniences arising fron the use of extract in steam dyeing, (vaporisage) it is necessary to replace those extracts by preparations in which the coloring matters are in a purer and more unalterable state and which are such that they may be fixed in the goods in an uniform manner, and at a degree ot humidity as analagous as possible to that of the dyeing bath; and this is
what has been effected by the following processes.
These improvements are founded on the general fact, that if to a decoction of any color ing matter, there be added a salt, such as the chloride of tin, the base of which has a great affinity for the coloring matter, an insoluble precipitate is the result, which holds very little, if an extraneous soluble matter, and contains the coloring prtnciple in astate of much greater purity than the ordinary extracts.
Although such an extract is insoluble ye it is capable of combining perfectiy with the extile fabrics aforsaid provided that the drying be performed while the goods are well damped. In consequence of the insolubility of this precipitate, the color obtained by means of it, may be fixed by steam without any pre vious dissication, and goods which may have been dried after printing may be again wetted without the danger of the colors running. The precipitates which may be thus obtained and applied, are numerous, but as they are all very simılar in effect, it may suffice to specify only those which appear to be most suscept ble of general use.

(T o be concluded)

History or the Rotary Engine.
Prepared expressly forthe Scientifie Ame ican
wilcox's rotary engine.
This is a rotary engine of $\mathbf{M r}$. Wilcox-the inventor of the one in our last number and as it is very different, it is worthy of a place in our history.

Fig. 29.

A is the ontside fixed cylinder. B, the in er or revolving cylinder, D D, two or more pallets working through a deep stuffing box, and turned by a lever or other power from the external part of the engine alternately flat or edgewise; the pallets D D, are fixed to the revolving cylinder, E is the steam passagehe one to the condenser is not shown

Fig. 30.

This is what is called a top or bird's eye view. A is, the outer or fixed cylinder. B the inner or revolving cylinder. C C, the pallet, used as a cock, or a portion of a circle fitted accurately to the circle it describes with a spindle working through the top of the cylinder. D, is a groove into or aganst which the part coming in contact with the revol ving cy. linder is secured with a piece of chilled iron in order that the constant friction of the revolving cylinder should not injure the pallet. E is the passage from the boiler, and F that to the condenser. G is the pallet secured to the working cylinder. In this figure two portions of circles and eocks are introduced to shew their situations clearly.
Fig. 31 is another top view of a rotary engine -all these being modifications of one princi ple, which shews the want of principles in the coustruction of these engines for steam moters. Cocks are used in this engine to re gulate the steam in place of valves. A is the
outer or fixed cylinder with a fixed pallet. C C, the cocks which are wrought from the out. Fig. 31.

side of the engine, by a spindlepassing through the top. D is a piece of chilled iron in the ock to resist the friction of the revolving cyinder, as explained in last figure. E is the steam passage aud F the passage to the consteam pr.
denser
There would certainly be a great difficulty in fitting the pallets of fig. 29 close at the joints to prevent leakage -a great difficulty in rotary engines, and the two latter modifications contain the same elementary principles of construction and operation, as the engine of Mr. Flint, in No. 14 Scientific American, and they have the very same defects.

Interesting Experiment.
A writer in the Batavia (N. Y.) Spirit of the Times, suggests that the phenomenon of the variation of the compass, may be in some way dependent upon the equally unaccounted for existence of the A arora Borealis. On the morning of the 18th ult., he says, when the whole southern hemisphere was filled with a redish light, accompanied by the usual appearance, under similar cireumstauces, in the north, he placed the needle of a surveyor's compass upon the magnetic meridian, and observed that it inclined with an uneasy, restless motion, three and a half degrees towards the east. As the Aurora died away, the needle retrogaded with the same motion as before to its original position. He supposed that as the Aurora may exist without necessarily being visible, the same influence may at all times manitestitself on the magnetic needle. This was the opinion of Oersted, and it is generally admitted to be correct by electrici-

If E B E S T Mechanical Paper IN THE WORLD ! fourth year of the

SCIENTIFIC AMERICAN :

416 Pages of most valuable information, illustrate with upwards of
500 HECHANICAL ENGRAVINGS: The The Scientific American differs entirely from
the mazines and papers which food tne country, the magazines and papers which food the country,
as it is a Weekly Journal of Art, Science and Me:
ehanis as it is a weekg Journal of Art, Science and Me-
ehanies, having for its object the advancement of
the INTERESTS OF MECHANICS, MANUFAC.
TURERS and INVENTORS Each number is il. TURERS and INVENTORS Each number is id.
lustrated with from five to TEN original ENGRAR
VINGS OF NEW MECHANICAL INVENTIONS nearly all ofthe best inventions which are patented
at Washington being illustrated in the Scientifie
Americh American. It also contains a Weekly List of Amer.
ican Patents ; notices of the progress of all Mechan.
ical Pate ican Patents; notices of the progress of all Mechan-
ical and Scientific Improvements ; practical direc
tions on the construction, management and use of
all kinds of MACHINERY, TOONS, \&e. \&c all kinds of MACHINERY, TOOLS, \&c. \&c
It is priuted with clear type on beautifus pa.
per, and leing adapted to binding, the thiscriber
is possessed, at the end of the year, of a large vol.
ume of 416 pages. illustrated with upwards of 500 is possess
ume of 41
mechanic mechanical engravings.
TERMS : Single subscription, $\$ 2$ a year in ad
vance; $\$ 1$ for six months. Those who wish to sub.
scribe have only to enclose the amount in a letter, Vance; $\$ 1$ for six months. Those who wish to sid
scribe have only to enclose the amout 1 a a letter
directed to

All Letters must be Post Paid.
INDUCEMENTS FOR CLUBBING.

 A SPLENDID PRESENT!
To any person whe will send us Three Subscri-
bers, we will present a copy of the PATENT LAWs of
THE UNITED STATEs to
 tion relative to PATENT OFFICF BUsINEss, inclnding
full directions for taking out Patents, method of ma. kuing the Specifications, Culaims, Drawings, Models,
buying, seling, and transfering Patent Rights, \&o. ung the specincations, Claims, Drawing s, Models,
uhing, selling, and transfering Patent Rights, \&o.
This is a present of GREAT TALUE yet may be obtain. This is a present of GREAT vaLUE, yet may be obtain-
ed for nothing, by the reader of this prospectus, if he
will take the trouble to get Three Subscribers to the Will take the trouble to get Three Subscriberss, to the the
Scientific American. It will be an easy matter to obtain two names besides his own.
MUNN \& CO., Scientific American Office, N. Y

