

For the Scientifie America
New Chemical Law.
No. 14.
It has been remarked that oxygen gas in uni ting with other substances, bears a strong re semblance to chlorine, bromine and iodine and like them, pussesses strong electro-nega tive qualities, but it cannot belong to the sam aggregated series with these substances, sinc the chemical properties of its compounds ar different. Thus oxygen in uniting with hy drogen, should form a saseous hydracid simi lar to the hydrochloric, hydrobromic \&c, acids, did it belong to the same aggregated series but we find instead of producing a gaseous hydracid, water is the result, which being liquid is contrary to the requirements of the law, and therefore removes all possibility o its belonging to the above mentioned class. But if it cannot be considered as belonging to the above mentioned class; its manner of uni on seems to indicate that it may be a com pound of that series. By comparing the che mical properties of oxygen with the chemi cal properties of the compound of chlorine bromine and iodine, we may discover a com pound of known composition, from which by analogy we may be enabled to arrive at the true composition of oxygen. To what com pounds then of chlorine, bromine and iodin is it similar?
It is well known that oxygen gas was for merly considered the only acidifying princi ple in existence, and that the presence of oxy gen was necessary for the formation of any acid whatever. This is now known to be an error, since perfect acids can be formed with out the least particle of oxygen entering into their composition. The hydrogen acids of chlorine, bromine and iodine are examples of the existence of acids containing not the leas particle of oxygen-Mfor- from one source and thus claim hydrogen the only acidifying principle in existence, oxygen an hydracid and similar in the form of its composition to any of the hydracids. This view gives a satisfactory explanation of the form of its com position, and although oxygen possesses not
the least taste of an acid, yet this may be ascribed to the fact that in the series it is so fa situated from any other of the hydracids, as to differ in its tasting properties. Thus nitrogen is tasteless but the same cannot be said of the remaining substances in that class, viz an hydracid with an atomic weight of 8 , the radical which has united with hydrogen to form it, must evidently possess an atomic weight of 7 . Now according to the proper ties of this series this radical must be one o its substances, and since it possesses an atomic weight of 7 , it must be the radical which b its aggregation forms nitrogen, chlorine, bro mine and iodine. It must possess an intense affinity for hydrogen and it is probably for this reason that oxygen has never been decompo sed. This is the only satisfactory way of ac counting for its composition by this law, and is a result flowing from its direct application As it must be a chemical compound, some future attemptat its decomposition may prove effectual. It is at least worthy of the trial, for there is probably no substance which plays a more important part in the operations of na ture than oxygen; a true knowledge of its composition is therefore much to be desired. There is another substance included in the present list of the elements which must be also considered as a chemical compound and the products of a chemical union, namely, fluorine. This substance in its chemical properties closely resembles chlorine, bromine and iodine, but an examination of its compounds removes the idea of similarity. To what substance then is it similar ?

If we examine the similar cyanides, or these cyanides which have the same form of composition as the fluorides, we can perceive a close similarity in their chemical properties.

If upon this ground we consider fluorine If upon this ground we consider fluorine
possessing a form of composition similar to possessing a form of composition similar to
cyanogen, we will have the following comound hydracids.
Hydrofluoric Acid C 2 R + H. specific grav ity 1.0609 , boiling point 58°. liquid
Hydrocyanic Acid C2 2R+H. specific graity .6969 , boiling point 80°. liquid.
Where R. represents the radical of the nitrogen, chlorine, bromine and iodine family, and $2 R$ represents nitrogen, fluorine should therefore possess an atomic weight of $12 .+7$, hat is 19. These statements are supported by theoretical evidence and may therefore be false, too much dependence must not therefore be placed in them, although there exists greater reason for the belief in the compound naure of oxygen, than in the compound nature f fluorine.
S. N.

Bridgeport, Conn.
To Measure the force of Pressure.
If we take a leaden bullet of any determinate diameter, and expose it to pressure between plates of harder metal made to approach each other in a parallel position, the bullet will be compressed or flattened on the oppoite sides in an equal degree; provided the lead is pure, the degree of compression will indicate the amount of pressure. With a graduated press of the lever kind, it will be easy o form a scale of pressure corresponding to the different degrees of compression until the ball is reduced to a flat circular plate of about one-fifth of an inch in thickness, and it will be found that an ordinary bullet of about flve eighths of an inch diameter will require a pressure of near 4000 pounds, to effect this de gree of flattening. Suppose, therefore, we wish to measure an actual pressure estimated to be nearly 20 tons, we have only occasion to place ten or twelve of these balls at a proper distance asunder, so as not to be in conact when expanded, and afterwards add anto one sum the particular pressure due to each ball from the scale first made, by using he lever press before mentioned. By this mode Mr. Bevan ascertained the amount of friction of an iron screw press with rectangular threads, to be from three-fourths to four-fifths of the xceeded four of five tons when the calcula ted pressure, if there had been no friction, would have been 20 tons. The larger the ball, the greater will be the pressure neces sary to reduce it to a given thickness. An ordinary leaden shot, of one-eight of an inch diameter will require nearly 100 pounds to compress it to a flat plate. By using a ball of five-eights of an inch diameter, Mr . B. found he actual pressure of the common bench vice to be above ten tons when under the same orce; if there had been no friction, the pressure would have been eight tons. In the practical application of these balls, it will be convenient to make a small impression upon them with a hammer, before they are placed between the plates, to prevent them from rolling out of their proper position; this operaion will not be found to interfere with the result, as it is the ultimate compression only hat is sought and which is not affected by that of a smaller degree before impressed. This property will also be found very conve nient, for the same substance may be used se veral times, by taking care that each succeeding pressure exceeds that of the proceeding The application of these leaden balls to deter mine the actual pressure, will not interfere with the regular operation of the press at the same time the balls are used, which of course must be placed between separate plates.

Treatment of the Cholera in Rnssia.

A gentleman in Russia writes that he ha upwards of 300 people at work and the cho lera all around him; 60 of his people wer taken ill and he called them together and ex plained the symptoms, which are a loss of ap petite, a heaviness, and a disagreeable sensa tion at the pit of stomach. He then adminis tered to those who were seized one glass and a half of spirit of wine in a glass of water with four or five teaspoonsful of powdered charcual, and three drops of oil of mint, and the patient took violent exercise until a strong perspiration was induced, and all recovered those who were weakly he admistered the charcoal to in a fresh egg beat up with a littl water, milk warm.

History of the Rotary Engine

 Prepared expressly for the Scientific Ame. rican.flint's rotary engine. Fig. 25.

This is an engine patented in England i 1805, by Mr. Andrew Flint. C, fig. 25, is an outer cylinder of cast iron. D, is the bottom plate of the same. G, is the inner cylinder hollow and divided by a partition. The two cylinders C G, must be turned very true and placed exactly concentrically. A hollow central shoft is cast in one piece with G, forming an axis. K and L, are two valves consisting of a top and bottom plate, M M, as seen in Fig. 26.

connected by a portion of solid cylinder N. The plates M, are sunk into the plates D, so as to be flush with their inner surfaces, and the connecting piece N , lies in and fills the cavity prepared for its reception in the outer cylinder C, at O, and thus completes the inner surface of the same. P, is a steam float firmly attached to the cylinder G, and revol-
between the two cylinders, which passing it accurately closes by means of a packing of hemp and tallow. The several parts must be well packed to prevent leakage, and this has been and always will be the great difficulty attending rotary engines. This is owing to their form. There is a circular groove R, sunk in the inner surface of the plates D, concentrical to the axis of the cylinder G, and the valves K and L respectively. In this groove is placed a metal packing ring fitted with packing against which the surfaces of the said plates $G \mathrm{~K}$, and L work. This packing is regulated to any degree of tightness by screws passing through the cover of the cylinder. The steam is admitted to the lower division of G, and passing through the aperture before L, it acts upon P with a power proportioned to its elasticity and the area of P, and thus forces it round till it passes the valve K when it pas. ses through the small aperture seen there, and from there it is passed to the upper division of G, and by a windıng passage it is, according to the specification, made to pass into the hollow axis, to get the reaction force of the steam. It is but a very poor engine indeed. The reaction force of the steam is a very great blunder in some mechanical contrivances. Whatever "reactive force" of steam as they call it, is endeavored to be employed, it is so much reaction loss, that is all. Steam is not water-this should not be forgotten. It is a combination of a certain amount of caloric wilh water which gives the water new powers and new principles. Mr. Flint's roary never made his fortune, and it now operates only on print, a beacon to warn the youthful mechanical navigator from getting wrecked on a sand bank.

Spear Practice of the Hawailans. " They were peculiarly expert," says a r

 ent voyager to Isles of the Pacific, "in the hurling of the spear and miraculously so in a voiding of it when hurled against themselves. To this practice they were systematically trained; and even now, after peace has continued nearly fifty years, and civilization has substituted its own weapons for those of barbarism,the officers of the fort, who were always happy to entertain us with specimens of their native warfare, perfectly astonished us with heir dexterity in' the management of the spear. One stood to be aimed at, while seve ral others, at a distance of about twenty paces rapidly darted against him the long spears of ancient times with such vigor and certainty, that their comrade, who acted as their com mon butt, could be saved by nothing but his own coolness and agility. Buthe was apparently as muchat his ease as if he had been Gulliver among the Lilliputians. Some of the weapons he would send flying off at an angle by touching them with his shoulder, or leg, or arm. Others he would catch by the middle and hurl back at the throwers, thus directly turning the tables on the enemy. One or two he might perhaps clutch between his arm and side, and, at all events, even when a special display of skill was impracticable, he would still dodge the mischief by a slight inclination on his body. In this apparently dan gerous pastime Kamehameha was rather ford of exposing his royal person ; and when urged to be more careful of his valuable life he replied, that it was as easy for him to avoid he spears as it was for his antagonists to throw them."

The Ice Trade.

Since January last there have been export ed from Boston 55,522 tons of ice, an increase over last year of 8,170 tons. The great suc cess of the Bostonians at the East in supply ing more Southern sections with ice has arou sed speculation in the same article on the Northwestern lakes. A large temporary buil ding was erected last year on the banks of Lake Huron, and about 3000 tons of a pure article was secured. During the past summer this ice was shipped to Cincinnati, and sold in that market from $\$ 30$ to $\$ 60$ per ton. A com pany is now forming in Cincinnati with a capital of $\$ 50,000$, for the purpose of supplying New Orleans with the article, by the way of the Illinois Canal and River. It is the inten tion of the company to build flat boats and send them direct through to New Orleans with ing. The ice of Detroit River and n is of a quality not surpassed any where in the country.

H E B EST Mechanical Paper IN THE WORLD ! FOURTH YEAR OF THE

SCIENTIFIC AMERICAN: valuable informt
500 MECHANICAL ENGRAVINGS: the The Scientific American difiers entirely the magazines and papers which flood tne country, She
chanics, having for its object the adrance and Me the INTERESTS OF MECHANICS, MANUEAC
TURERS and INVENTORS Each number is id
lustrated with from five to Iustreted with from five to TEN Orh number is in
linGS OF NEW MECCANICAL INVENTION
nearly all ofthe bestinyat nearly all of the best inventions which are patented
at Washington being illstrated in the Scientric
American. It also " ican Patents ; notices of the progrens of all Mec
ical and Scientific Improverents practical d
tions on the construction, management and us
all kinds of tions on the construction, management and use of
all kind of MACHINERY, ToOLS, \&c. \&cc.
It is printed with clear, type on, beautifuc pa.
per, and being adapted to binding. the subscriber
is possessed, at the end of the year, of per, and being adapted to binding, on beautifini pa. pabscriber
is possessed, at the end of the year, of a arargo vor
ume of 16 pages. mechanical engravings.
TERMS : Single subs vance; \$1 for six monsths. Those who wish to aub
scribe have only to directed to

Publishers of the Scientific America
MUN 1 ishers of the Scientific American,
128 Fulton street, New York. All Letters must be Post Paid.
INDUCEMENTS FOR

Southern and Western Money taken at par for sub
criptions. Post Office Stamps taken at their full A SPLENDID PRESENT To any person whe will send us Three Subscri-
bers, we will present a copy of the PATENT LAWs op bers, we will present a copy of the PaTENT LAWs of
THE UNITE STATEs, together with all the informa
tion
 king the Specifications, Claims, Drawings, Modem. buying, selling, and transfering Patent Rights, sec.
This is a present of GREAT vALUE, yet may be obtin This is a present of GREAT vALUE, yet may be obtain.
ed or nothing, by he reader of this prospectus, if he
will take the trouble to ed for nothing, by the reader of this prospectus, if he
will take the trouble to get Three Subscribers to the
Scientific American. It will be an easy matter to
obtain two names besides his own.
MUNN \& CO., Scientific Ameriean Office, N. Y

