

NEW YORK, DECEMBER 23, 1848.
Poets and Inventors.
On another page will be found a beautiful article from the pen of Thomas Ewbank, in which he justly institutes a comparison between poets and inventors. The comparison is not regarding their merits or their works, but the similarity of their mental composi tion-the intense, the burning concentration o thought which distinguish the two in pursuit of their objects. The comparison in many respects is a correct one, although the majority of mankind are apt to suppose that inventors are mere plodding, unimpassioned, calcula ting beings. There never was a greater mis take. Sir David Brewster, in his Martyrs of Science, justly estimates the power and uses of imagiation to the man of science in the great discoveries made by the renowned Kep ler. The inventor must not only possess ima gination but he must be endowed with a rea soning mind-a far greater attribute of mental strength, we believe, than to possess but the quality of ideality, and in this opinion w are backed by unquestionable authority
In the Essays of John Sheppard there oc curs the following sentence, attributed to Professor Playfair; "The physical wonders of creation far transcend the boldest and most hyperbolic imaginings of poetic minds-the reason of Newton and Galileo took a sublimer flight than the fancy of Milton and Ariosto."
Mr. Ewbanks in his article demolishes the recent discovery of ornamenting wood by the punching down parts of it with dies and then planing or turning the projecting wood off', and raising the depressed parts by soaking the wood in water. This invention would no doubt make some very ornamental kinds of wood work, and this reminds us of an article published in the Transactions of the Society of Arts in 1825, describing the same process as having been invented by a Mr. J. Straker It is identical in its nature and operation with the one described in John White's collection in 1684. This shows us that there are a great many re-inventions. This is to be expected, but in cases where the re-inventor had no knowledge of a previous invention, he is entitled to as much honor. There is not a new discovery or invention, however simple, but costs the inventor much study, anxiety and labor.

Flying Machine.

Flying Machines and Perpetual Motionsare very old and unfortunate acquaintances. No people have invented so many as the Germans, and many a poor fellow has lost his life by his fool hardy confidence in some machines he had invented to ride upon the winds, yet for all the accidents that have taken place to high flyers, from the Dutch Doctor at Ratisbone in 1692 to the unfortunate Englishman who perished a few years ago in London when descending by a parachute, there are still to be found new flying machines coming out every few months. An Austrian made quite a fine display in Cremone Gardens, London last winter, by taking several long jumps with a steam flyer. Since that we have heard no more about it, and presume it has met the fate of its illustrious predecessors. But the end of flying machines is not yet, and here we insert the description of a new and an original one certanly, taken from the Jacksonian published at Pontiac, Michigan, and sent to us marked for particular inspection by the author we suppose, who communicated the same to the columns of the Jacksonian. After des cribing how wings had been tried to beat the lark and eagle, he says:-

As wings then, have failed, and balloons been attended with no better success, men have begun to think that the end is unattainable, and that flying is a victory which man can never achieve.
The art of flying simply consists in the sus-
pension and motion of a heavy body in a light pension and motion of a heavy body in a light
er. Although this may appear contrary to the er. Although this may appear contrary to the
nature of things, it is what takes place every day, and is seen exemplified in the case of every insect and bird that flies-all of which are heavier than the air. A bird is a species of flying machine, heavier than the air, but moving about independently, and yet as safe and as certain to remain suspended as an inflated balloon would be. If a condor, which weighs many million times as much as mosquito, flies with ease and rapidity, why should not some still more huge machine traverse the air with equal facility?
To accomplish the end desired, we have but to keep in view the cause of a bird's flight. It is simply this philosophical axiom-that crrcumstances being the same, a greater force must overcome a less. If the weight of bird be as 1 , and its mechanical appliance for counteraction be as 2 , the bird will rise from the earth when its powers are exerted. Herein is all the mystery of flying; and if a bird or machine weigh ten tons, and have mechanicapparatus for acting upon the air with a power of twenty tons, the machine must cer tainly rise. This is the only condition requisite, and so long as it is kept in view, and the resistance of the air in bodies of different velocities ascertained, the capability of heavy bodies to fly may be made a subject of mathematical certainty.
In regard to power, taken in connection with the space occupied, there is no form of artificial wing equal to the screw or propeller wheel. While the wings of a bird alternately draw in and strike out, the power of a screw is constant and unvarying. The power with which a given diameter of screw wheel, making a certain number of revolutions per miute, will act upon the air, can easily be deermined by experiment, and the elevating orce of any number of wheels can thus be ascertained. Having accomplished this, we shall know exactly how much weight can be aised, and can construct and load our machine accordingly.
Let.us suppose a machine to be constructed resemblivg a long railway car, with arms proecting at certain distances from the roof and gon wheel. At the extremities of these arms he axles of the screw wheels or wings a inserted, which thus work parallel to the earth, instead of perpendicular, as in a vessel. At the stern of the car are from two to four wheels, to serve as propellers, the side wheels being merely to elevate and suspend the car In the interior of the car, at the centre, is the team engine, with the fuel and water, while he extremities are reserved for passengers and baggage. The wings are moved by inde pendent bands connected with the internal machinery, so that the whole or a portion of them may be used at once, for the conveni ence of ascenoing and descending.
Unlike the heavy railway car, the frame hould be constructed of wrought iron, and he roof, sides and floor be covered with thin sheet iron or copper, suitably supported by ight frame work where necessary. The wheel wings should be constructed in the same manner-strength combined with lightness being always kept in view. Steam engines are now constructed of great lightness nd power, and we have not arrived at the recise epoch when the great feat of navigaing the air can be accomplished." Aha!
"This machine instead of having two wing ike a bird, will have from four to twelve, according to the length. The forward end hould be built sharp, to offer less resistance to the wind. Having more wheels than are ecessary to its elevation, no danger can occur rom any accident that may occur to one or two of them. The machine can be guided by ome kind of rudder, or by stopping one or wo of the stern wheels, which are attached o each side of the stern.
At first sight, such a machine as this may appear the production of a visionary, but the same would have been said fifty years since had any man described a locomotive engine and a railway. Every step towards the construction of this machine can be based on mathematical principles The air furnishes a vast fund of power for the use of mankind, although as yet they have only used it to propel
ships and wind-mills. We live in an age of great discoveries and improvements, and among these will certainly be ranked the navigation of the air. The most distant voyages, overland may be accomplished with expedi tion and little cost by these machines, all that is necessary being wood and water, which are abundant on this continent.
A car forty feet long, with five wheels on each side, eight feet in diameter and three smaller propellers at the stern, would certainly appear a novel object, when roaring along through the air. If a certain breadth of wheel be not sufficient, try broader ones-if the velocity be too slow, increase it. Let those whe have capital and science devote their mite to plished."

We must say that we have not a mite to con tribute to this cause, as we think that th comparison between the musquito and condo is altogether in favor of the former, and be side the art of flying by " the mechanical ap pliances for counteraction" as explained, is al together different from our notion. Every ar tificial object that can fioat in the atmospher must be lighter than its bulk of the atmos phere, let the mechanical appliances be as cu rious as they may, and beside the law in this respect is, that bodies according to their grea ter lightness than the atmosphere will only ascend in proportion to their magnitudes, tha to the cube of their diameters, and this minus of your coalandall such terra firma gimcracks. We would greatly have preferred the paddle wheel to the screw, in the atmosphere, as w certainly do for navigating the Atlantic or Hudson, being fearful that if we tried the propeller on an ærial voyage, we might ge into a worse place and get some harder knock than the Great Britain in Dundrum Bay. We however wish the inventor success-but be fore he proceeds to construct his machine we hope he won't forget the law that was disce vered by the great Newton in the falling an apple.

Perpetual Motion.

There are some men who pursue this sub ject with wonderful perseverance, and ten city of purpose. This passion is not confine to the ignorant, as too many sterniy practica men are apt to suppose but it is pursued by many men of much erudition and scientific attainment. We do not despise such labor, we admire the enthusiasm that can pursue a subject with unabated zeal from day to da and from year to year, as when the gifte Boyle made it his study for many long years and if we have but little hopes of it ever being accomplished, still, we cannot sneer at thos on whose minds it has become
"The star of hope that shines alone To cheer their mental burning zone." It is not long since that a gentleman name Ritchter in Madison Co. Geo., constructed machine which his neighbors considered to be the finale of perpetual motion, and they had a grand demonstration says the Family Visito in honor of the inventor, with a display of fire works and shouting aloud " long life to Charles W. Ritchter the inventor of perpetua motion." No man who is acquainted with the principles of Mechanics, the composition of forces and the law of gravity, can see any hope, indeed there is none, for any machin propelling itself by mere mechanical force It is not easy to tell what may yet be done by the application of electricity as a motive power, but all the motive power worth speak ing of that has yet been derived from electri city, has been by the voltaic battery, and con sequently it was a chemical as well as mecha nical combination." There have been so many machines invented of a perpetual motion character, " which have sunk to rise no more" that the public has become somewha quizzical upon the subject and not until a per petual motion full, complete and applicable to useful purposes, is exhibited and in operation for years, will the public believe that such thing has been accomplished, and it will be long before we see this, that is as a propelling power for large machines; as applied to clock work, the electric clock is as near an approach to perpetual motion as we require, but those who think to create a perpetual motion by the expansion, and contraction of fluids, by the heat and cold of the atmosphere-accu
mulating and dispensing power thereby, have never given the subject a complete examinaion, nor persued the experiments of Perkins and yet there are many who suppose that by this means they will yet discover the grand unknown. It is but a few weeks since we had a communication on this very way of making a perpetual motion. To those of our friends who are looking to the same means to accomplish this object, we can only quote Ephesians chap. 2, v. 10, "No hope."
To electric science alone can we look with any hope for a perpetual and powerful motive power-and we confess that our hopes are weak.

Patent Cuse.

On the 15th inst. betore Judge Kane, in the U. S. Circuit Court Philadelphia, was tried a case for the infringement of a patent for alleged improvements in machinery for breaking and screening coal. The complainant was Mr. Battin, defendant Mr. Clayton. This was a trial in which much interest was felt in the mining districts
This case was on trial about six months ago and the new trial was granted at the instance of the plaintiff, who asked leave to change the pleadings. Upon the first occasion the claim made was to "a combination" of two known machines, (a pair of breaking rollers and a circular screen) by which a certain re sult was done in one movement that had here tofore been done by two movements. This, the Court ruled, is not patentable.
On the present trial the plaintiff varied his claim from the combination of rollers and creen, and claimed for a new mode of arrang ing the breaking rollers, "so that the teeth of one shall work into the spaces between the eeth of the other."
The Judge ruled that as this alleged im provement produces no new result, it is also not patentable.
The plaintiff then declined going on, and a nonsuit was entered, by agreement, of the folowing nature.
And now, Dec. 15th, 1848, nonsuit is entered, the Court reserving for consideration upon a motion to take off the nonsuit, the several points ruled during the trial with leave to the plaintifs, (if tbe Court refuse to take it off to elect either that the nonsuit shall stand or that a verdict be entered for the defendant as if the jury had found such verdict, in order that the plaintiffs may have the benefit o their bills of exceptions, which are now tendered by them and sealed by the Court to the several rulings and decisions of the Court during the trial; so that the opinion of the Supreme Court in error may be had thereo in like manner as if there bad been no non suit.

Birmingham in Missouri, is said by H. King M. D., Geologist, to possess great advantages or the manufacture of pig iron. The iron ore is abundant and so is the best cannel coa which can be delivered for three cents per bushel, it is so easily mined. It is estimated hat iron can be manutactured there for at least 10 per ton less than the foreign. It will no doubt be some time before they can do this. The grand facilities for the manufacture of iron are, coal, iron ore, and lime lying in the bosom of one another, as is the case in the iron districts of England.

Coal in Massachusetts
It is reported that a coal bed has been dis covered in the town of Weston, Middlesex Co Mass. In digging a trench preces of coal were thrown up, which upon examination proved o be bituminous, burning as freely as Cannel coal.

SCIENTIFIC AMERICAN.

Persons wishing to subscribe for this paper have only to enclose the amount in a letter di rected (post paid) to

MU

 ork City.Terms.-\$2 a year; ONE DOLLAR If ADVANCE-the remainder in 6 months.
Postmasters are respectfully requested to receive subscriptions for this Paper, to whom a discount of 25 per cent will be allowed.
Any person sending us 4, subscribers for 6
conths, shall receive a copy of the paper for he samelength of time.

