The Electrle Telegraph.

 No. 7.The Electric Chemical Telegraph, is radically different from that of the Electro Magnet Telegraph. It is not operated by electro mag-netism-no magnet is used about the whole apparatus. The principle of it consists in having a strip of prepared paper pass over a roller, on which rests a steel pen, and as the circuit is closed and broken, there will be light and dark marks made by the pen on the prepared paper, and these marks are the letters of any message sent along the wire formed by the operation of breaking and closing the crrcuit. The philosophy of this operation consists in having the paper prepared with solution of the ferro cyanate of potass and ni tric acid, and the marks of the steel pen ar formed by a decomposition of the iron by the; electric current where the pen and pre pared paper comes in contact, and conse quently a new combination is the result which is the cyanade of iron-a blue color The prepared paper for the electro chemi cal telegraph could be made another way but the above is sufficient to show its nature It is a kind of calico printing. The first pattent that was taken out for a telegraph of this kind was Mr. Davy of London in 1838 . His invention was not a practical one, and conse quently was never used. In 1843 Mr . Alex Bain took out a patent for a very important improvement on Davy's in fact first made it of practical worth. In 1846, Mr. Bain took out another patent for a valuable improvement and his machine as improved, at least for an Ocean Telegraph, transcends every other that has been constructed A full des cription will be tound with engravings on page 273, Vol 3 Scientific American. We have now said enough to point out the difference be tween the deflective, the magnet, the print ing, and the chemical telegraphs.
The science of electricity, as applied to te legraphing, is but in its infancy. As a pub lic conveyancer of news, it is a young, but an intrepid and swift mail carrier. It will yet in a great measure supersede the letter bag, and consequently every improvment to render it more available to the public, is of greatimpor tance.
The first telegraph patentee in Britain and the first telegraph patentee in America hav sturdily opposed every other inventor in the same field. This is human nature-frail and selfish Two of the Examiners in our Patent Office, have been blamed for being interested in opposing the claims of every telegraph in ventor but those of Proi. Morse, and circum. stances seem to give just ground for complaint in this matter. The circumstances to which we specially refer, are the late transactions relative to contested claims of Bain and Morse for the ElectroChemical Telegraph-to every disinterested person who has paid attention to the matter in dispute, and to the evidence adduced on both sides, the claims of the former have not had fair play, for the whole world almost has had occular demonstrations of the fruits of his invention, while the claims of the latter have to be sustained by dim proofs. We have read the letter of Henry O'Reily to Prof. Mor e concerning the attempted $T e$ egraph Monopoly. It is caustic and severe From his letter it would appear that he has been ill-used by the Agents of Mr. Morse, but as this is a business controversy (but a very important one to the public) we will not say a word about it until it is settled at low. We have only been discussing different principles of secured telegraphs, and we will alvays advocate the just rights of the inventor, as viewed by us, without partiality and without fear. From the evidence which we have gathered together respecting the claims of different inventors, we believe that there are three telegraphs now before the people of the United States, totally diferent from one another, and separately the inventions of dif ferent inventors. The one is the Electro Mag. net Telegraph of Mr. Morse; the 2 d is the Printing Telegraph of Prof House, and the thind is the Electro Chemical Telegraph of Mr Bain. Every one of these telegraphs is enough to conter scientific distinction upon their authors.
We have read the controversy in the Tribune between Moriod and Mr. Page, Examin-
erin the Patent Office. Like all other controversies it is too personal and Mr. Page has given us cause of regret in using a term to designate a stranger, whohas come to this counry with character the mostupright, and whose works as displayed in this city, place him in the front rank of inventors and mechanicians

For the Seientific Amorisan.

Blanchard's Gun Stock Machine.
Messrs. Editors.-In your valuable journal of November 25th, I find noticed a trial which recently occurred in the United States District Court, held at Philadelphia before Judge Kane fur an infringement of Blanchard's Patent Gun Stock Machine. In that notice you say. "We wish to be impartial and ure vish to see the true inventor protected. We will be glad to publish the views of Mr . Blanchard's friends and really wish that we could publish the evidénce adduced at the late trial " In reply to this kindoffer I would state that as soon as this important case is finally decided, it is my intention to publish not only the evidence adduced at the trials, but also the able and conclusive charges of Judge Kane which contain an enunciation of the nost important principles invelved in patent cases.
A publication of this nature while the matter in dispute is still before a legal or equitable jurisdiction, and while numerous other suits are pending in the several Circuits both in equity and law, seems to me scarcely justifiable and however much benefit might be derived from such a course I shall not follow ad example but will defer the opportunity offered of fully vindicating to the Scientific world the originality of Mr. Blanchard's invention until the final decision of these cases. At present I am at a loss to know to what extent the Jury were influenced by statements foreign to the Court or witness stand; but in my opinion other circumstances than the evidence given at the Trialshadan important inluence in producing the disagreement of the Jury empannelled. You were misinformed as to the point that the Judge charged the Jury with regard to some articles published in the Scientific American. During the course of the trial he simply cautioned the Jury gainst published articles, without however aming any publication and this no doubt gave ise to the reports which reached you. The result of these trials has clearly shown the inefficiency of our present Patent Laws when hey are invoked to protect the rights of the Patentee. For thirty years has Mr. Blanchard been obliged to contest against those who vere continually under some pretext or other infringing his Patent and he presents the sinular spectacle of having always established his right before a legal tribunal, and yet his xpenses incurred in establishing these rights have bten greater than any income derived from the same. This threatens tocontinue as he same defences are set up in new cases which have been decided worthless in old adjudications. Under our present laws jurors not only consider themselves judges of facts, but ssume the province ot the Court and ventur to decide upon doubtful questions of law. Step by step the true inventor is losing all he benefits which should be derived from the riumph of his labor and skill, and is placed at the mercy of those who are possessed of mple means to pursue a long contested legal uit. With regard to the publication of the vidence I would state that it has been repor ed in full in several cases which is now in y possession, and the same course will be pursuedat subsequent trials. To such an extent as this evidence and the decisions founded thereon, may be considered by you valuale to your numerous readers, I shall at some uture period avail myself of the privilege of your columns. This will be done however
notso much for the purpose of vindicating the originality of Mr. Blanchard as an Inventor (for that has been adjudicated before the blest jurists of the country) as to demonstrate the improper means which hare so long delayed the final settlement of these questions.

Amos K. Carter.

- Vewark, N. J. Nov. 27th 1848.

In answer to Mr. Carter, we wall be happy hish the evidence andopiaions mentioned
publishany article relative to Mr. Blanchard's invention until the cases that are now before the eourts are decided. Honor and truth are the planets that direct our course in conduct ing the Scientific American.-Ed.

For the Scientific American

Messrs. Munn \& Co.-In the trial between the Blanchard Gun Stock Co. against Brown, Eldridge, and others, the Jury, as in a former ase, were unable to agree
The question turned upon the respectiv claims of Azariah Woolworth and Thoma Blanchard to the invention; whether it wa simultaneous with both or whether Blanchar was the original projector and inventor.
This is the first time the two claimants have confronted each other upon the witness stand Mr. Blanchard having disposed of his entire interest the day previous to his appearance in said capacity for the purpose above stated.
The case as yet remains undetermined by reason of the discharge of said Jury. Both parties have received patents.

Very respectfully yours, \&c

> J. B. E

Philadelphia, .Vov. 25, 1848.

A Singular Rook.

There is near Stoney Brook, Marris county, N. J. a huge rock lying on the mountains i a curious position. The stone is a boulder about 20 feet in length, 14 inbreadth, and of a tabular form, with average thickness of 7 feet and weighing consequently about 150 tons But it is not the mere size and weight of such a stone removed by some unknown agency from its original bed, that gives it its interest there are many such, and of even larger size that lie scattered about the mountains. It is its pecular position. It lies on three large stones of rounded form, and elevated above a piece of flat inclining rock from $2 \frac{1}{2}$ to 3 feet and making under it an openspace whereone may find the cooling shade or protection from the shower. The rock rests its almost entir weight on two of the stones placed in a line nearly across the centre, and the spaces on which its great werght depends is in the one case 10 inches by 2, and in the other 5 by 6 inches. The third stone seems but to serve the purpose of keeping up the balance of what it preponderates on one side and here it rests pona point only an inch in diameter
So nearly is this rock balanced, that one with a good lever, properly adjusted, can move it ; and thus by overcoming a difference in the balance equal to about 2 tons can move the whole 150 tons. What is a little singular, there are near by it three other large rocks resting in part on smaller stones, although no elevated like the former

The Largest Scythe Manufactory in the Worid.
The largest scy the manufactory in the worl is in the State of Maine a few miles from Hal lowell. It belongs to Reuben Dunn, Esq., very enterprising gentleman. The establishment consists, besides warehouses, fur aishing shops, \&c., of three principal buildings for manufacturing, two of which are one hundre and forty-four feet each in length. In these and in departments connected with the estab lishment, are employed about one hundred men, many of whom have families settled a the place A flourishing village has grown up within a few years, and is rapidly increasing
Tweive thousand dozenscythes are annual ly manufactured, to produce which are requir ed $450,000 \mathrm{lbs}$. of iron, $75,600 \mathrm{lbs}$. of steel 1200 tonsot hard coal, 10,000 bushels of char coal, 100 tons of grind-stones, and half a ton of borax. The last article is used in the proces of welding.
The proprietor has been at great pains to manufacture a superior article, and no scythe is permitted to go into the market till it has passed the ordeal of two experienced and careful workmen, besides the examination of the general superintendent, whose inspection extends to every part of the establishment. This care has given these scythes a celebrity which secures a ready sale for all that can be furnished.

Mr. Dunn is erecting additional works in he vicinity, which will soon be completed when he will be enabled to turn out 17,000

Rapld Motion and Soun

The following article by Mr. Scott Russel and published in the London Athenæum, will be found of considerable interest to many of ur readers.
Until the existence of the verv high velociies now given to railway trains, no opportunities have existed of observing any pheno nomena, in which the velocity of the observe has been sufficient to affect the character of sounds. The author, having had occasion to make observations on railway trains moving at high velocities, has beenled to notice some vers curious effects in sounds heard at 50 and 60 males an hour. These effects are not heard by an observer who is stationary. He found that the sound of a whistle, on an engive sta tionary on the line, was heard by a passenger in a rapid trair to give a different note-in a different key from that in which it was heard by the person standing beside it. The same was true of all sounds. The passenger in ra pid motion heard them in a different key which might be either louder or lower is pitch, than the true orstationary sound.
The explanation of this was given as fol lows :-The pitch of a musical sound is determined by the number of vibrations which each the ear in a second of time- 32 vibra tions per second, of an organ pipe, give the note C , and a greater or less number give more accute sound, or one more grave. These vibrations move with a velocity of 1024 fee per second nearly. If an observer in 2 rail way train move at the rate of 56 miles an hour, towards a sounding body, he will meet a greater number of undulations in a second of time than if at rest, in the proportion which his velocity bears to the velocity of sound ; but if he move away from the sounding body, he will meet a smaller number in that proportion In the former case, he will hear the sound a emi-tone higher, and in the latter a semi-tone ower than the observer at rest. In the case of two trains meeting at this velocity, the one containing the sounding body, and the other he observer, the effect is doubled in amount Before the trains meet, the sound is heard two semi-tones too high, and after they pass, two emi-tones too low-being the difference of major third.
There were next explained, the various ef fects which the noises of a train produced on the ears of passengers at high velocities. The eflected sounds of a train, from surfaces like hose of bridges across the line, were at ordinary velocities, sent back to the ear changed by less than a semi-tone, so as to cause harsher discord, which was an element of the unpleasant effect on the ear when passing a bridge. In a tunnel, also, the sounds reflected from any irregularities in the front of the train, or behind it, were discords to the sound. of the train heard directly. He showed, how ver, that, at a speed of 112 miles an hour these sounds might be those of a harmony with each other, and become agreeable, fo the sounds reflected in opposite direction would have the interval of a major third.
Sir. D. Brewster observed, that in h1s opi ion, the explanation of the curious effect of rapid motion of the observer on sound, was o be sought from physiological causes, and not acoustic ; and pointed out what he considered to be analogous phenomena with respect o light-such as the augmentation of light he boundary of moving shadows, the perfee clearness with which objects could be seen through rapidly moving openings in screens, and the production of color by screens in me. ion under certain circumstances.
Sir. W. S. Harris conceived that all the ef ects were to be explained by the undulatory heory of sound, in the manner in which they were explained by Mr. Scott Russell.

Bullding Sooteties.

Building Societies appear to be quite popuar in Canada. A loan meeting of tha Upper Canada Building Societies was held at Toronto a few weeks ago, when shares of the stock were sold at the average bonus of 581.4 pe cent. The shares of the Niagara District So ciety sold on Monday last at an average bonus of 45 per cent. These Building Societies are calculated to effect much good in affording

