

For the Scientifc American
New Cnemical Law.
No. 10
We will continue the subject by introdu cing a few more examples.
$\begin{array}{lll}\text { Terchloride of Silicon, } & 124^{\circ} & \text { liquid } \\ \text { Terbromide of Sllicon, } & 302^{\circ} & \text { liquid }\end{array}$ Teriodide of Silicon.
No compound of nitrogen with silicon nor iodine with silicon, has yet been discovered The iodide of silicon shọuld possess a simila rity of chemical properties, also a boiling point greater than that of the bromide of si licon. The boiling points in the above example are on the increase. No specific gravities are given. The terbromide of silicon treezes at the temperature of 10°, if then the law be true, the teriodide of silicon should be a solid at that temperature, and at common temperatures. Future experiments will therefore determine the truth or falsity of these remarks. The following is an example of the substances composing this aggregated series untung with one of the substances produced by the aggregation of the radical C H previ ously described.
Chloride of Methyle, $\mathrm{Cl} . \mathrm{H}+2 \mathrm{CH}$ gas.
Bromide of Methyle, $\mathrm{Br} \mathrm{H}+2 \mathrm{CH}$.
Iodide of Nethyle, I.H+2 CH. specific gra vity 2.237 , boiling point 112°. Auid.
Hère we have a case where the two series cotie in contact, and yet all the conditions which the law requires, are fulfilled as far as the properties are given. The bromide of methyle is probably a liquid, but if a gas, it is easily compressed into the liquid state, and should be exceedingly volatile. Its specific gravity should also be less than the iodrde.This intersection of series may be still fur ther seen by the following examples of the same series as thelast but nipher in the list. Chloride of Ethyle, Cl.H+4 C H. specific grávity 874 , boiling point 58°. fluid
Bromide of Ethyle, Br. $\mathrm{H}+4 \mathrm{CH}$. sp. grav 1.450 fluid.

Iodide of Ethyle, I. $\mathrm{H}+4 \mathrm{CH}$. sp. grav 1.920. boil. pt. 161°. fluid.

The spectic gravities in this example are all given and how faithfully do they agree with the conditions required by the law. The boiling points of the bromide of ethyle is not given, but if it is governed by its weight of atom, it should possess a boiling point of about 102°, perhaps some bigher. Future experiments upon this substance will give us its exactboiling point, and then we shalisee if this be the case. The boiling points, specific gravities, \&c. of the chloride, bromide and iodide of amyle, should also increase in a regular manner and possess similar chemical properties.
Perchloride of Formyle, Cl.H +2 C.Cl. specific gravity 1.480 , boiling point 141° liquid Perbromide of Formyle, Br. $\mathrm{H}+2 \mathrm{C} . \mathrm{Br}$. spegrav. 2.100.
Periodide of Formyle, S.H†2 C.S. boiling point 280° vol. solid.
The perchloride of formyle or chloroform, as it is commonly termed, is by this law considered as chloride of methyle, with its two atoms of hydrogen belonging to the aggrega. ted series of C.H. replaced by chlorine, bro moform and iodoform are merely the bromide and iodide of methyle with their two atons of bydrogen in the base, replaced by either bromine or iodine : the same as the hydrogen in the chloride of methyle, is replaced by the chlorine Thisgives an example where an aggregated series is by substitution changed into another. In the above example the boiling point of the periodide of formyle is greater than that of the perchloride. The boiling point of the perbromide should therefore be between the two. The perchloride is a fluid whilst the periodide is a solid, which is according to the requirements of the law. The specific gravities of the perbromide and the periodide are probably greater thas that of the
perchloride, and that of the periodide greate than that of the should be regcrease of specific gra should

Chlcride of Phosphorus, $\mathrm{Cl} .3+\mathrm{P}$. liquid. Bromide of Phosphorus, Br. $3 \not-\mathrm{P}$. liquid. Iodide of Phosphorus, I. $3+$ P. solid.
The specific gravities and boiling points o these substances have not yet been ascertain ed; they probably increase with the series It may also be seen that the general density increases according to the requirements of the law; the first two being fluids and the last a solid.

When it is asserted that a regular increase or decrease exists in the specific gravities \&c. of the chlorides, bromides and iodides o any particular substance whatever, the asser tion admits of proof. Who then is there who will show a single instance of the failure of the requirements of the law. In the exami nation of the substances, we have proceeded upon the ground of similarity of chemical pro perties to the substances themselves, and have shown their probable composition or constitution, the same as if we had proceeded from the similarity of the chemical properties of the substances comprising the aggregated series of C.H. to their composition. Both cases are precisely similar. Why then are not the elements above treated of compound, and aggre
is 7.

Bridgeport, Conn.
History of the Rotary Eingine.
Prepared expressly for the Scientific AmeFig. 18

HORNBLOWER'S ROTARY ENGINE Mr. Jonathan Hornblower's Rotative En gine (for which a patent was secured in 1798) displays much ingenuity. The vessel in which the steam operates consists of a hollow cy inder, composed of two unequal parts, the maller section of which is screwed off and on, for the purpose of rectifying and repair ing the internal structure. These parts ar cast separate, and then screwed together, firm and close, by means of flanches. They are hen covered with lids turned also true, and form a figure resembling a drum. A Z are two tubes. which pass through the central penings in the lid of the drum, meeting each other at B. I H N M, are the interior limita of those tubes, on the inside of the drum which are considerably larger than at A Z, in heir diameters; the use of which is, tha thereshall be a proper cavity at UT, R O, to receive a packing of tow and grease, or any other materials answering the purpose, be tween that particular part and the end of the drum; and also the frames of the diaphragms CC, may have the firmer holding to the hol low axlfs or tubes at D D, leaving the parts of the diaphragm pendent at $S K$. The dotted lines show the interior limits of the drum, when the diaphragms are in their places; be. tween which and the extremities of the diaphragms there is a proper rabbet to receive the packing, and between the pendent part of the diaphragms and the central hollow tube about which it revolves. This rabbet is $f 01 m$ ed bv mears of plates of metal, sciewed on to the frame of the diaphragms, having their edges nearly in contact with the inner surface of the drum, and will be found accessible to repair or renew the packing, when the pan. nel which constitutes a part of the drum is removed. The parts $E G$, may also be repaired at the same time, by removing two screws at each end of the hollow tabe. The diaphragms (which are standing in opposite directions) may therefore freely revolve the
one after the other, or ons may move whils the other remains stationary. The tubes to Fig. 19.

which they are attached will have their concentricity preserved by means of the solid xle within the hollow one at E, which is fixd to the end of the tube Z, and passes closely through a hole in the end of the tube A, till reaches the extremity; where, by mean of a second collar, its central position is critically maintained. The two diaphragms are ollow within, and hold communication with he cavities of their respective tubes which ompose the hollowaxes; and these communications are made by oblong openings wher the diaphragms and tube are connected at D D.

The diaphragms are completed when these plates are screwed on ; in these plates are fixed two valves G, opposite to which are two thers, one in each diaphragm, so correspon ding, that at the opening of one the other is closed, and vice versa. These valves are ba lanced and held in trunions, so that, in every station of the diaphragms, they may uniformly obey the impulse by which they are open ed and shut; the manner in which that is eftected is as follows:-The two diaphragms widen towards their extremities in the manner of radii, (see Fig. 2) and may therefore be brought into sufficient contact to force open he valves by means of prominences on them for the purpose.

To explain the manner in which the diaphagms are wrought upon when in their proper place, let Fig. 2 represent one end of the hol ow cylinder or drum, and the central circles exhibit the hollow tubes or axles already explained The two diverging parts are the ends of the diaphragms, and are packed as before mentioned ; now, these diaphragms are hollow within, and if we consider one of them to be constantly supplied with steam by means of the hollow tube to which it is connected, and the other continually holding communication with the condensing water, the cousequence will be, when steam is admitted through a valve into the lesser apartment of the drum and another valve open from the empty diaphragms into the larger apartment, that the diaphragms will recede from earh other, with all the force of the steam between them; but if, hy proper prevention, they can move only in one direction, it is plain that the one will remain etationary till overtaken by the other'; heir junction will then shift the valves into contrary positions by means of the prominent partsin them for that purpose, and the apartment, before filled with steam, ingtantly becoming empty, the diaphragm which

Was before stationary now becomessactive, and the momentum of the former may, in effect, be considered as transferred to the latter. There being, therefore, in these parts of the machine a continual motion, by rapidly succeeding each other in a circular direction, their respective axles on which they turn, and which communicate motion to other machiuery without the drum, are influenced in the same manner, agreeable to the main principles herein primarily set forth.
In order that the steam shall have a power of turning the diaphragms only in one direction, let Fig. 1 represent one of the lids of the drum, having the side that is faced true on the opposite direction to that exhibited in the drawing ; in this is a circular channel, G G, and á projecting ring P, which serves as a perpetual fulcrum to support the two levers, C D, that occasionally revolve in the channel, and act as detents. The outer boundary of the channel also acts as a fulcrum to the extremity of the two levers at their thick ends ; so that, when they are acted upon, from their connection with the axles turning them to the right hand, by means of a strong collar E, there will be no impediment to their freely revolving in the circular channel; but, when the xlesstrain upon the small ends of the levers in the contrary direction, they instantly become fixed so firmly between the two boundaries of the channel, as effectually to resist the whole force of the machine. To provide against the least retrograde motion whatever, when the levers may be partly worn from friction, they are furuished with springs between them and the outer extremity of the channel, so that the two bearing points may at least touch their respective tulcrums.

Artifictal Legs or India Rubber.
A patent has lately been taken ont in Eng. land for a vulcanized India rubber Leg. It is described by foreign papers to be the best artificial leg ever made in England- throwing the famous Anglesea leg quite in the shade.

A rich vein of red oxide, or pipe iron ore, has been discovered in Mills county, Mo.; in the midst of a heavily wonded country, and distant four miles from the Osage River. Copper has been found in the same place, and here is, it is believed, a supply of stone coal within five miles of the vein of iron.

H E BEST Mechanical Paper IN THE WORLD! fourth year of the
SCIENTIFIC AMERICAN: 46 Pages of most valuable information, illustrate with upwards of
500 MECHANICAL ENGRAVINGS: Th The Scient fic American differs entirely from
the magazines and papers which flood the country the magazines and papers which flood the country,
as it is a Weekly Journal of Art, Scicace and Me:
chanics, havin.g for its object the advancement of Chanics, havin, g for its object the advancement of
the INTEREESSOF MECCHANICS, MANUFAC.
TURERS and INVENTORS Each number is il-
lustrated with from five to TEN orriginl VINGS OF NEW MECHAN TEN original ENGRA.
Vean nearly all of the best inventions which are patented
at Washington being illustrated in the Scientific American. It also contains a Weekly List of Amer
ican Patents ; notices of the progres can Patents; notices of the progress of all Mechan-
cal and scientific Improvements ; practical direc ical and scientinc Improvements; practical diree
tions on the construction, management and use of
all kinds of MACHINERY, TOOLS, \&ce. \& Il kinds of MACHINERY, TOOLS, \&e. \&ec
It is printed with clear type on , \&e per, and being adapted to hinding, beautiful palibsibe
sopessessed, the thd of the year, of a large vo
me of 416 pages, illustrate mechanical pages, illust
mechanical ing ravings.
TERMS : Single subscription, \$2 a vear in ad-
vance \$1 for six months. Those who wish to sub.
 Publishers of the Scientific American,
128 Fulton street, N 128 Fulton street, New York
ust be fost Paid. All Letters must be Post Paid. CLUBBING.
INDUCEMEN IS FOR CL

10	il		nt	\$400
		12		\$800
	"	6	"	\$7 50
10	"	12		\$1500
20	"	${ }^{6}$	"	\$1500
20	"	12	"	\$30

Southe n and Wostern Money taken at par for sub
criptions. Post Ofice Stamps taken at their full value. A SPLENDID PRESENT! To any person who will send us Three Subscri-
bers, we will present a copy of the PArver Laws or
THE UNITED STATEs, together wi:h all the informathe united states, together with all the information relative to patrni offick business, including
full directionsfor taking out Patents, method of making the specifications, Clains, Drawings, Models, buying, selling, and transfering Patent Rights. \&cc.
This is a present of or EAT valuF, jet may be obtain-
ed tor nothing by the reader of this prospectua, if he This is a.present of of rat valef, jet may be obtain-
ed for nothing. by the rader of this prospectub, if he
will take the trouble to will take the trouble to get Three Subscribers to the scientific American it will be an easy mattor to
obtain two nam vis besides his own.
BUUNN \& CO., Soientific American Offloo, N. IT

