Planing Machines.

URI EMMON'S PATENT
This is a specification of a patent granted to Uri Emmons in 1829.
The Schedule referred to in these Letters Patent, and making part of the same, contain ing a description in the words of the said Uri Emmons himself, of his improvement in the mode of planing floor plank, and grooving and tonguing and straightening the edges of the same, planing boards, straightening and planing square timber, \&cc., by machinery, at one operation, called the Cylindrical Planing Machine.
The machinery for this improvement conists, first, of a frame of wood or metal ;-second, of the gear and fixtures, combined and connected together for the above named ope ration, the principle of which consists in running the plank, boards or timber, over, under, or at the sides of the cylinder of wood or metal, on which knives are placed, straight or spiral, with their edges exactly corresponding with each other, having from two to twelve Enives or edges; also, burrs or saws similar to those used for cutting teeth in brass wheels, to groove and tongue the edges of the boards or plank as they pass through between rollers, or on a carriage, by the surface of the cylinder. The shape, torm and construction of the above principle may be varied in shape and position, dimensions, Bcc., still the same in ubstance, the same principle producing the same effect. I have, by experimental operation, found that the following mode or formis he best:
1st. A frame composec of two pieces of limber, from 12 to 18 feet long, about 6 by 10 inches broad, placed about 15 inches apart, framed together with four girths, one at each end, and at equal distances from the centre, and flush with the under side; this frame is supported by posts of a proper length, framed into the under side of the above pieces of timber, and braced so as to be of sufficien trength to maintain the operative parts. There is placed a roller in the centre, of metal or hard wood, across the frame, the surface of the roller being even with the surface of the frame; directly above, and parallel with this roller, is hung the cylinder, made with two or four spiral edges or kaives, 6 to 10 incties in diameter, and hung un a cast steel arbor, resting in moveable boxes attached to the sides of the frame, so as to set the cylinder up and down from the roller, to give the thick ness of the timber to be planed. On each side of the cylinder is placed a pair of feed ing rollers, of hard wood or metal, the under one of each pair being level with the centre one; the upper onesare hung in boxes, which are pressed down with springs or weigh so that when the timber comes between them, they will hug and carry it through. These rol ersare connected, and turned by wheels, at relocity of about 12 feet surface of the roller per minute; the cylinder with two edges to make about 2,500 revolutions per minute, cutting 5000 strokes every 12 feet; this can be varied according to the number of edges, power and velocity of the different parts. The power is attached to the cyliuder, by a belt running on a pulley on the outward end of the cylinder shaft; each way from the feeding rollers, is placed rollers about two feet apart for the timber to rest on while run aing through. On one side of the frame fastened a straight edge, to serve as a guide lined with metal; on the other side, rollers are placed in a plece of timber, which is pres ed up to the plank or board, to keep it close to the guides or straight edge by a spring The grooving and tonguing is done by burrs or circular cutters, similar to a saw ; these burrs are hung on perpendicular spindles, the arbors of which rest in boxes attached to the nward side of the frame; a burr on one side o cut the groove, and on the other is placed wo burrs, just as far apart as the thickness of the above one for cutting the groove. At or near one end of the frame, is hung a shaf with a drum or rollers, from which belts pass into pullies on each spindle of the burrs or circular cutters, which must have about the same velocity of the cyliader; these burrs are plared on one side of the cylinder oppo site to each other, so as to cut the tongue to match the groove; on the other side of the
cylinder is an arbor, parallel with the cylinder, on which is placed circular cutters for planing the edges of the boards or plank as they pass hrough ; the cutter on the side, next to the guide, is stationary on the arbor, but fastened with a screw,to set it for different widths; a elt runs from a pulley on the end of the arbor outside the frame, to the said drum, as lso the same from the cylinder, each having bout the same motion. The feeding rollers re put in metion by a belt from a slow par of the driving power I have also put in ope ation, a carriage for feeding, but rollers
the time running the carriage back.
er and claim as my improvement, and for which I solicit a Patent, is as follows, viz :
1st. The principle of planing boards and plank with a rotary motion, with knives or edges on a cylinder, placed upon the same traight or spiral, as betore described, which I putin operation at Syracuse, in the Count f Onondaga, in the state of New York, in th early part of the year 1824.
2 d . The burrs for grooving and tonguing, in contradistinction from the mode used by Wil am Woodworth, he using duck-bill cutters 3 d . The feeding, by running the timber hrough in a carriage, or between feeding rol ers guided by a straight edge as before des cribed; also the circular cutters for straight ning the edges before described
In testimony that the foregoing is a true pecification of my said improvementafore de cribed, I have hereunto set my hand and eal, the eighth day of April, in the year of our Lord one thousand eight hundred and wenty-nine. URI EMMONS.
Witnesses-Thomas Thomas, Silas Hath way.

Lighting of Factories,

Various materials have been used for the manufacture of illuminating gas as a substitute or coal ; but without success when brough into competition with coal, as it is eviden would be the case, when it is considered tha he material from which coal gas is made really costs nothing; the coke or residum rom the coal being worth as much, or more, or many uses, than the coal previous to it feing carbonized. The cost of the gas to the manufacturer being for labor, fuel, \&c. with he interest or the cost of works.
The process of converting coal into coke, by the abstraction of the bituminous portion is carried on extensively; the bituminous, or that portion which in coal gas works is con verted into illuminating, gas being wasted.
Why then, it may be asked, have other ma terials been used? In the early stage of cea as manufacture, before the art of purifying was understood, the offensive odor produced by sulphhydrate of ammonia resulting fromforign substances, al ways contained in a greater or less degree in coal, prevented its use in dwellings. Oil was therefore substituted, to small extent for coal for generating gas: but its high cost, together with practical difficulies not seen at frst, and which became more and more serious as the business advanced caused such works to be abandoned, - and the undertakings proved ruinous to those engaged in them. The following remarks on this sub ject are from the Encyclopedıa Britannica :"Oil being decomposed at a loss of nearly fifty per cent the conversion of it intogas, after protracted but ineffectual competition with coal, has been gradually abandoned on the arge scale, even in those places where from he interest of the whale fisheries, there were he strongest inducements to toster the un ounded prejudices which prevailed for some time against the use of coal gas. The exag erated advantages which it was pretended would be derived from compressing oil gas, and thus rendering it portable, served to pro ong the gross delusion on the subject. Nor were these delusions fully removed, until demonstration was given of the failure of the scheme, in the decay of costly edifices and expensive apparatus, which, in defiance of ll sober calculations, had been constructed or carrying it into effect."
" The capital expended upon oil gas estab lishments is actually applied to reduce to the extent of thirty per cent the intrinsic value of the raw material, which it was pretended to
mprove in an equal degree; add to this the loss of gasin the main pipes, which is found
to be fully twenty per cent., and itfollows that the light from oil gas is obtained at twice the expense at which it may be procured immediately from the oil itself."
Rosin, a much less costly material, was made a substitute for oil in the manufacture of gas and such work, though attended with a degree of success have yielded gradually to coal gas works, and we believe that all the gas works in this city will soon use nothing else ut coal.
An error formerly very prevalent, and which led to the use of rosin as a substitute for coal in the manufacture of gas was, that the amoun of light afforded by illuminating gas, was in direct proportion with its specific gravity.This law was deduced by the aid of the pho ometer, or by observing the depth of shad ows cast by flames, from gasses of different specific gravities, within short distances. It is wholly inapplicable however, when applid to general illuminations.
For example: a camphine (spirits of turpenine,) or solar lamp, in the middle of an apart ment 16 or 18 feet square, will not afford hroughout the apartment half the light that an argand burner consuming $4 \frac{1}{2}$ feet of gaspe hour, in a like situation, would afford, yet if we test the two flames by the ordinary me thod before referred to, our conclusions would e in favor of the camphine or solar lamp.
From a series of careful experiments, made with coal gas of sp. gr. 0,450 and rosin gas of sp. gr. 0,800 it was deduced that the light giving value of the latter, compared with the ormer, wasas $8837 \cdot 100$ ths to 100
The illuminating power of coal gas varies very corsiderably in different establishments as it is dependant upon the quality of the coal used and the care taken in its manufacture. 100 anbic leet of gas made from the best coal requires for its combustion 170 cubic feet of oxygen. 100 cubic feet of gas from sperm il requires 190 feet of oxygen. Assuming, with Dr. Henry, that the illuminating power is in proportion to theoxygen required, then heir relative value would be as 170 to 190 .
The value of rosin gas would be by this mode of comparing something less than that rortrit.....
If, however, we take into considération the less offensive odor arising from coal gas and the greater whiteness of the flame, it would be perhaps nor unfair to ascribe an equal value to the same quantity from whicher material produced whether coal or rosin. In North Carolina gas made from rosi would certainly be the cheapest, but in Penn sylvanis and other States where there is bi uminous coal-why not use coal for the illumination of every city and village. We may perhaps live to see the time when houses in cities will be heated as they are now illuminated, and this might well be done in con nection with as companies.

The Tomib of the Prophet Jonah.
The Nebbi Yunns (so called on account f the tomb of the Prophet Jınah, which is supposed to be within this village,) in Persia is built on an ancient artificial mount belong ing to the ruins of the far-famed Assyrian capital. The tomb of the Prophet Jonah is in nosque of considerable size; the room wher e to is richly furnished with carpet and ornamented with large and beautiful Arabic inscriptions from the Koran. There are also the names of the four Khalifas (or Califs) written in the large Arabic character. There was formely a Christian monastery where the upposed tomb of Jonah now stands. The Christian tradition (of course we mean only the Christians of Mosul) 18, that Jonah preached in that place, but they deriy his having been uried there; they believe that when he ac omplished his mission, he returned to his na tive country.

Curlous Swearing
In law suits between Russians and Ostyaks, it is still the custom at Beresov, to bring into, court a head of a bear, and this animal which is supposed to be omniscient is there appeal ed to as a witnessby the Ostyaks. In swear ing they make the gesture of eating and call upon the bear to devour them ia like manner if they do not tell the truth.

Valuable Scientific and Mechanical Works.

We continue the catalogue of Mechanical Books commenced in the last number of the Scientific American. Those who desire to obtain copies of any of those works have only o enclose the amount named by mail, to the undersigned, and the work shall be at once undersigned, and the work shall be at
forwarded. Letters must be post paid.

MUNN \& CO.,
Scientific American Office, New York

Ranlett's Archltect.

A series of Orifinal Designs, adapted to the Uni.
ted States ; finely Ilsustrated with drawings of
Plans, Ground, and Lots, \&c. \&cc. 1 vol. Price $\$ \$$. Brown's Carpen ter's Assistant. Containing an Account of the various orders of
Architecture illustrated with Sixty Plates. 1 vol. Architect
Price $\$ 5$.

Haswell's Fingineer's andMechanic's Poc-

 Containing United States and Foreign Weights Steam and the Steam Engine, \&cc., \&c. 1 vol. Price $\$ 1,50$.The Theory, Practice and Arohitecture of
Bridges of Stone, Iran, T.mber \& Wiro. Bridges of Stone, Iron, T, mber \& Wiro.
With examples on the Principles of suspension.
vols. illustrated by 138 Engravings and 92 wood 3 vols. illustrate.
cuts. Price $\$ 30$.
Bourne's 'Creatise on the Steam
Its application to Mines, Mills, Steam Navige.
nd Raile Its application to Mines, Mills, Steam Navigation,
and Railways, Eited by John Boounae, E. E. Illustra
ted by Thirty Plates, and Three Hundred Nine Engravings on Wood. Second Edition. 1 vol.
Price $\$ 9$.
gress or the Steam Engine. and Pro-
gress or the Steam Ennglne. aining minute Descriptions of all the various impro-
ed Boilers. Illustrated by upwards of Two Elum va Boilers. Illustrated by upward
dred Engravings. 1 vol. Price $\$ 6$.
Hodge ou the Steam Kingino.
Its Origin, and Gradual Improvement. 48 large

Transactions of the Institution of Civil Engineer f London, comprising papers by emint Engineer On Bridges, Canals, Railroads, Steam Engines, \& \& C. Templeton's millwright's and Englueor
Pocket Companion. Pocket Companlon.
Seventh Edition, with Illustrations. Price $\$ 2$. cribner's Engineer's, Contractor's and
Surveyor's Pocket T'able-Book. Price $\$ 2$. Hosking's Treatise on Architecture. Building, Masonry, Joinery, and Carpentry.-
Price $\$ 5$. Practical Treatise on Locomotive EnFounded on a great many new Exporiments, made
n a large scale; to which is added an Appendix, on a large scale; to which is added an Appendiz,
howing the expence of convejing goods by Loc
notive Eingines on Railroads. 1 vol. Price $\$ 6$. (To be Continuted.)

Peruvian Bark.
A modern traveller, alluding to the mode in which the Peruvain bark is gathered, says that in the wonth of May, the Indians assemble and epair to the extensive cinchona woods. Ono of the party climbs a high tree to obtain if possible, an uninterrupted view of the forest, and to spy out the manchas, or spots where there are groups of Peruvian bark trees.
The men who spy ont the trees, are called cateadores, or searchers. It requires great ex perience to single out of the dark leaf-cover ed expanse, the cinchona groups merely by the peculiar tint of the foliage, which often differs very littie from that of the surrounding trees. As soon as the cateadore has marked out and correctly fixed upon the mancha, he descends to his companions, and leads them with wonderful precision through the almost impenetrable forest to the group. A hut ia immediately built which serves as a resting place during the night and is also used for drying and preserving the bark. The tree is elled as near the root as possible, divided into pieces each from three to four feet long, and with a short curved knife, a longitudinal in cision is made in the bark.
After a fewdays, if the pieces are found to be getting dry, the bark, already incised, is stripped of in long strips, which are placed in the hut, or in hot weather, before it, to dry In many parts, particularly in the central and southeru districts of Peru, where the moisture s very great, the bark is dried in the forest, and the strips are packed in large bundles. In other districts on the contrary, the bark is rolled up green, and sent to the neighboring villages, where it is dried. Towards the end of September the cascarilieros (bark-gatherers) return to their homes.

Typographical Blunders.

They have some funny 'errata' in the coun y papers, now and then-but nothing to equal the original one, which runs thus:
"Errata.-In our last week's paper for 'Buableton's Storm-destroying Purringers, read Hamilton's Worm-destroying Lozenges."

