dusimess and zersomal.

The Charge for Insertion under this head is One Dollar

a linefor each insertion; about eight words to a line
Advertisements must be received at publication office
as carly as Thursuay morning to appear in next issue.
Lubricene.-A Lubricating Material in the form of Grease. One pound equal
R. J. Chard, New York.
Assays of Ores, Analyses of Minerals, Waters, Com mercial Articles, etc. Technicalformulx and process
Laboratory, 33 Park Row, N. Y. Fuller \& Stillman.
Manufacturers of Improved Goods who desire to buil up a lucrative foreign trade, will do well to insert a well displayed advertisement in the SCIENTIFIC AMERICAN
Export Edition. This paper has a very large foreign Export Edit
ciroulation.
Cutters, shaped entirely by machinery, for cutting teeth of Gear Wheels.
turers, Hartford, Conn.
18 ft . Steam Yacht, $\$ 250$. Geo.F.Shedd, Waltham, Mass. Electrical instruments of all kinds. One Electric
Bell. Battery, Push Button, and 50 feet Wire Bell, Battery, Push Button, and 50 feet Wire for ${ }^{84,00}$
Send for catalogue. H. Thau, 128 Fulton St., N. Y. Wheels and Pinions, heavy and light, remarkably
strong and durable. Especially suited for sugar mills strong and durable. Especially suited for sugar mills
and similar work. Pittsburgh Steel Casting Company, Pittsburgh, Pa.
Boilers ready for shipment, new and 22 hand. For good boiler, send to Hilles \& Jones, Wilmington, Del. Foot Lathes, Fret Saws, 6c., 90pp. E.Brown, Lowell,Ms Sperm Oil, Pure. Wm. F. Nye, New Bedford, Mass. Power \& Foot Presses, Ferracute Co., Bridgeton, N. J Kreider, Campbell \& Co., 1030 Germantown Ave
Phila., Pa., contractors for mills for all kinds of grinding Phila., Pa., contractors for mills for all kinds of grinding Punching Presses, Drop Hammers, and Dies for work-
ing Metals, etc. The Stiles \& Parker Press Co., Middle town, Conn.
All kinds of Saws will cut Smooth and True by filing them with our New Machine, price $\$ 2.50$. Illustrated
Circular free. E. Roth \& Bro, New Oxford, Pa.
"The Best Mill in the World," for White Lead, Dry, White, Shoe Blacking Pr White, Shoe Blacking, etc., Flour, Meal, Feed, Drugs,
Cork, etc. Charles Ross, Jr., Williamsburgh, N. Y. A Practical Engineer and Machinist, 24 years' experi-
ence. Best of reference, marine or stationary; forge; ence. Best of reference, marine or stationary; forge
fit ; repair. W. Barker, 433 d Ave., N. Y. Hydraulic Presses and Jacks, new and second hand.
Lathes and Machinery for Polishing and Buffing metals. Lathes and Machinery for Polishing and Buffing metals
E. Lyon \& Co., 470 Grand St., N. Y. Nickel Plating.-A white deposit guaranteed by using
our material. Condit,Hanson \& Van Winkle,Newark,N.J. Cheap but Good. The "Roberts Engine," see cut in this paper, June 1st, 1878 . Also horizontal and
vertical engines and boilers.
E. E. Roberts, 107 Lib erty St., N. Y
The Cameron Steam Pump mounted in Phosphor
Bronze is an indestructible machine. See ad. back page. Presses, Dies, and Toolsfor working Sheet Metals, etc Fruib and other Can Tools. Bliss \& Williams, Brooklyn,
N. Y., and Paris Exposition, 1878 , N. Y., and Paris Exposition, 1878.

The Scientific American Export Edition 18 pub-
lished monthly, about the 15th of each month. Every lished monthly, about the 15 th of each month. Every
number comprises most of the plates of the four preceding weekly numbers of the SCIENTIFIC AMERICAN, with
other appropriate contents, business announcements etc. It forms a large and splendid periodical of nearly
one hundred quarto pages, each number illustrated with one hundred quarto pages, each number illustrated with
about one hundred engravings. It is a complete record American progress in the ar
Bound Volumes of the Scientific American.-I will sell bound volumes $4,10,11,12,13,16,28$, and 32 , New Se
ries, for $\$ 1$ each, to be sent by express. Address John
Edwards, P. O. Box 773, New York Edwards, P. O. Box 773, New York
For Solid Wrought Iron Beams, etc.. see advertise
ment. Address Union Iron Mills, Pittsburgh, Pa., for lithograph, etc.
Pulverizing Mills for all hard substance and grinding,
purposes. Walker Bros. \& Co., 23d and Wood St., Phila. purposes. Walker Bros. \& Co., 23d and Wood St., Phila 2d hand Planers, $7^{\prime} \times 30^{\prime}, \$ 300 ; 6^{\prime} \times 24^{\prime \prime}, \$ 225 ; 5^{\prime} \times$
$24^{\prime \prime}, \$ 200 ;$ sc. cutt. $\mathrm{b}^{\prime} \mathrm{k}$ g'd Lathe, $9^{\prime} \times 28 \prime^{\prime \prime}, \$ 200 ;$ A.C. Steb 24t, \$2200; ;c. cutt. $\mathrm{b}^{7} \mathrm{k}$ g'
bins, Worcester, Mass.
J. C. Hoadley, Consulting Enginee

Best Wood Cutting Machinery, of the latest improve kinds, eminently superior, manufactured by Bente
Margedant \& Co., Hamilton, Ohio, at lowest prices. Water Wheels, increased power. O.J.Bollinger, York, Pa
We make steel castings from 14 to 10,000 lbs. weight
times as strong as cast iron. 12,000 Crank Shafts of thi steel now running and proved superior to wrought tron Circulars and price list free. Address Chester Stee
Castings Co., Evelina St., Philadelphia, Pa. Diamond Saws, J Dickinson, 4 Na,
Diamond Saws. J. Dickinson, 64 Nassau St., N. Y. Machine Cut Brass Gear Wheels for Models, etc. (new
list). Models, experimental work, and machine work 1ist). Models, experimental work, and machine wor
generally. D.Gilbert \& Son, 212 Chester St., Phila., Pa.
Holly System of Water Supply and Fire Protection for Cities and villages. See advertisement in Scientific a merican of last week.
The only Engine in the market attached to boiler The Turbine Wheel made by Risdon \& Co., Mt. Holly N.J., gave the best results at Centennial tets.

Hand Fire Engines, Lift and Force Pumps for fire
and all other purposes. Address Rumsey \& Co., Seneca
Falls, N.Y., U.S. A.
For Shafts, Pulleys, or Hangers, call and see stock
Wm, Sellers \& Co, Phis
Wm. Sellers \& Co., Phila., have introduced a new
Injector, worked by a single motion

NEW BOOKS AND PUBLICATIONS,

Metals and their Chief Industrial Ap- plications. By Charles R. Alder Plications. By Charles R. Alder Wright. London: Macmillan \& Co.

 12mo; pp. 191. Price $\$ 1.25$.In this neat little volume we have the substance of course of lectures delivered at the Royal Institution of
Great Britain in 1877, with thirty or more engraved il
lustrations of various metallurgical operations, The author discusses briefly, yet with sufficient fullness for metals from their ores, the natural sources of metals, the metallurgy of the different metals, the physical properties of metals, and their thermic, electric, and chemical rela
well chosen.
Dosia. A Russian Story. Translated from the French of Henry Greville, by Mary riat. Price $\$ 1.50$.
This is theseventh of the Cobweb Series of choice iction: a bright, wholesome but rather thin story, as befits its associations. Novel readers will find it an for beguiling the tedium of a summer journey.

(2)

(1) H. P. says: Please inform me of some recipe for removing superfluous hair. A. Make a with powdered starch. Apply immediately after bein mixed and allow to remain for ten or fifteen minutes See also p. 107 (8), vol. 38, and p. 25, current volume.
(2) M. A. C. writes: I would like to know how to dissolve bleached shellac, to make it a cement
or stone. A. Dissolve it by digestion in 3 or 4 parts of trong alcohol, or by the aid of $1 / 4$ its weight of borax in about 4 volumes of boiling water.
(3) A. K. asks: 1. In rating substances as tohardness, diamond being No. 10, how do aluminum, ber, also common and tempered glass? A. Aluminum about 3, iridosmine $6 \cdot 5$ to 7 , steel $5 \cdot 5$ to 6 , glass 5 to $5 \cdot 5$. . Can glass $3^{2} \frac{1}{2}$ inch in thickness be ground to angles of
15 per cent or less, and points as fine as pins, without 15 per cent or less, and point
ifficulty, and how? A. No,
(4) D. C. S. asks for a good recipe for leaning and polishing dirts and tarnished brass. A. Dip for a short time in strong hot aqueous solution of
caustic alkali, rinse in water, dip for a fewmoments in nitric acid diluted with an equal volume of water, rinse again, and finish with whiting.
(5) C. J. H. asks for the simplest way producing a coating of the magnetic or black oxide of ron on iron plates 3 feet \mathbf{x} feet. I think it is callod
the Barff process. A. See pp. 1041 Scientific American Supplement, and 232, vol. 36, and 4, vol. 37, of the Scientific American.
How can I make tissue paper impervious to air an water, and yet strong enough to confine gas? A. You may pass the fabric through a solution of about 1 part caoutchouc in 35 parts of carbonic disulphide, expos-
ing it then to the air until the solvent has evaporated.
(6) J. H. J. asks how to use hyposulphite (?) of soda to neutralize chloride of lime in cotton and linen goods after bleaching the same. A. After wash-
ing from it the large excess of the hypochlorite, the ing from it the large excess of the hypochlorite, the abric is passed slowly through a solution containing bout 10 per cent of the hyposulp
(7) Columbus asks for a recipe for making nk to rule faint lines, such as he is now writing on. He small quantity of warm water 20 parts of Prussian blue by the aid of 3 parts of potassium ferrocyanide, and dilute the solution with thin gum water until the pro(8)
(8) A. I. B. asks: Can I add anything to Arnold's writing fluid which will cause it to give a good
free copy in my letter book? A. Try a little sugar
(9) R. \& C. ask for information in regard to the process of printing copies of drawings made on paper and exposing to the sunlight. A. It is based on the fact that an acid in the presence of potassium dichromate strikes a blackish-green color when brought in contact with aniline. The paper is prepared by float-
ing iton a bath of aqueous solution of potassium dichromate and a trace of phosphoric acid, and thendry ing it in the dark. Aniline is dissolved in a little alcohol, and the mixed vapors allowed to come into contact
with the sensitive paper that has been exposed to strong sunlight beneath the drawing, when the portions not changed by the sunlight assume the a portions tioned. All that is requisite is that the paper or cloth original should be fairly penetrable by the light. A piece of paper sensitized as indicated, a sheet of glass
to place over the drawing, and a box in which to place the exposed print to the aniline vapor are the only nec-
(10) P. Y. P. writes: 1. To find the number acres in a farm of valley and hillside land, is it by measuring the general contour of the land, allowing its imaginary face of the plane of it? A. imaginary face of the plane of it? A. The latter raised on a farm of valley and hillsideland, as described above, than on a farm having a flat surface, the area of which is equal to the plane of the former, all other
(11) Inventor asks: 1. Can you tell me of book onsound boaras? A. We do not know of kind of wood to make them out of? A. Spruce.
(12) F. C. A. writes: I wish to construct a ar electro-magnet to go in a cylinder 1 inch indiame-
er and 1 inch long. 1. Whatsize ought the core to be? What number of wire shall I use, and what number of Léclanché cells shall I use (not to exceed twelve) to obtain the greatest possible attractive power, distance of an inch? A. Make the core 38 inch, wind it with No.
24silk covered wire. Use 6 or 8 cells. 2. In the same 24silk covered wire. Use 6 or 8 cells. 2. In the same
space, could a horseshoe magnet be used, with a gain of power over the bar magnet? A. A cslindrical magnet, which is substantially the same as a horseshoe, mig
be substituted with advantage for the bar magnet.
(13) W. C. H. writes: In turning a taper ing shaft in an engine lathe, will the tool if raised above the centers of the lathe turn the taper true from end to mise by sliding the tail senter the required distance
(14) H. E. H. asks how to make lime light. xyhydrogen blowpipe against a cylinder of lime. The oxyhydrogen blowpipe against a cylinder or heo.
blowpipe is contrived to take the proper proportion of oxygen and hydrogen gas, and thelime is placed in the focus of the jet
(15) L. F. asks: 1. How many Daniell's or Smee's cells would itrequire to produce thesame effect
as 50 Bunsen cells? A. About 100. 2. Is the diaphragm equally necessary in Bunsen's, Smee's and Daniell's than in the others, and why so? A. The diaphragm or porous cell is required in Daniell's and Bunsen's batteries, but is not used in Smee's. The porous cell is
used only in two fuid batteries; its object is to allow the current to pass, but to prevent the mixture of the twoliquids. 3. Is the thickness of the zinc of any im portance? A. Only that the thicker zinc lasts longer
Which is the cheapest way to produce electric spark and to charges Leyden jar and what will be the ex pense? A. By means of a frictional electrical machine The machines cost from $\$ 10$ upward.
(16) R. C. K. writes: I am an engineer by trade; have been at it 9 years. Am out of a position a present and want to learn mechanical draughting. How
long would it take me to become a good draughtsm by taking a special course at some university? And with my knowledge of engineering and dranghting If you are familiar with mechanical operations, you might become a good draughtsman by close application under a competent instructor for one or two years. At
present there are many excellent draughtsmen louking for positions.
(17) G. B. M. asks for the cause of the ribs ridges on the surface of a piece of timber which ha passed througha planing machine. A. They are fre
(18) A. F. writes: Having a small quantity of gold and gold plated things, I would like to know the simplest way to melt it. A. Put it in a small crucible f
fire.
(19) J. H. S. writes: I have three drawings each 21×30 inches, which I wish to mount upon cloth like a map, placing them end to end so as to make one
whole sheet 90 inches long. The drawings are upon heavy Whatman paper. A. You should stretch wet canvas or factory cloth upon a frame, and while it is still damp apply paste to the backs of the drawings and lay them smoothly on the stretched cloth. When the paste becomes thoroughly ary cut the cloth, from the
stretching frame and paste a tape binding around the
(20) P. M. asks: What is the difference be meen the M. and outer rails of a 10° curve 100 yard in length, gauge 4 feet 8 inches? A. If this 100 yard feet is R, the length of the inner rail is $\frac{R-2 \frac{2}{3}}{R} \times 100$,
and of the outer rail $\frac{R+2 \frac{2}{3}}{R^{2}} \times 100$.
(21) W. B. K. asks how to make a shoe dressing for ladies' shoes. A. Soft water, 1 gallon; ex-
tractof logwood, 6 ozs.; dissolve at a temperature of about 120° Fah., Soft water, 1 gallon; borax, 6 ozs shellac, 13/3 oz.; boil until dissolved. Potassium dichromate, $3 /$ oz.; hot water, $1 / 2$ pint; dissolve, and add
all together. It is preferred to add 3 ozs. of strong aqua ammonia to the liquid before bottling.
(22) J. D. asks: What chemicals can be put o water to increase its efficiency in extinguishing fire
(23) H. P. writes: Please give me the ad vantages and disad vantages of substituting a galvanized
ron tube 18 inches in diameter and 20 feet high for a ron tube 18 inches in diameter and 20 feet high for water in a dwelling house in the country. Would the narrower body of water keep fresh or sweet longer, etc. ? Also the thickness of iron necessary to safety, and the
number of gallons of water this tube would hold The advantages are in favor of the wooden tank; zinc ined vessels (galvanized) are unsuitable for reservoir for potable water. See p. 369, vol. 36, Scientific Amer ICAN. $0 \cdot 3$ inch iron would be stout enough. A pipe of
the dimensions specified would contain about 327 galwhen full.
(24) F. L. M. asks: 1. What is the process y which wire is given a copper finish? A. Clean the wire by pickling it for a short time in very dilute sul pass the clean wire through a strong bath of copper sul phate dissolved in water. 2. Can wire be thus finishe and also annealed? If so, how? A. The wire should be annealed first. 3. What other finish can be put on iron wire (annealed), and by what process? A. Zinc-
by passing the clean wire through molten zinc covered with sal ammoniac; tin-by drawing the wire through a bath of molten tin covered with tallow.
Minerals, etc.-Specimens have been reeived from the following correspondents, and examined, with the results stated:
J. H. McF.-A fine quality of kaolin.-F. C. H.-The coury powder consists chiefly, if not altogether, of calcium carbonate.-C. L. G.-They are all silicious lime
stones. We cannot judge fairly of their value for build ing purposes from the powders sent.-D. K.-Ferrugin ous earth or marl.-A. E.--It is a partially decomposed feldspar. The white powder is for the most part an impure, silicious, kaolin.-E.H.-It consists chiefly of basi carbonate and hydrated oxide of lead-poisonous.-JJ.
B. V.-It is a fair quality of pipe clay-impure silicate of alum.

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American acknowledges
with much pleasure the receipt of original papers and ntrilutionts on the following subjecte : Religion, By W. M. E.
Cause of Explosion in Flouring Mills. By G. M.

[OFFICIAL.]

INDEX OF INVENTIONS

Letters Patent of the United States were

 Granted in the Week Ending
May 28, 1878,

AND EACH BEARING THAT DATE.

Those marked (r) are reissued patents.]

A complete copy of any patent in the annexed list,

 Including both the specifications and drawings, will befurnished from this office for one dollar. In ordering, please state the number and date of the patent desired
nd remit to Munn \& Co., 37 Park Row, New York city.

axle box slide, car, G. Williams................. 2 ,

 Axles, sand guard for carriage, M. C. Nay Baker and cooker, steam, J. A. McClure. Bale tie, L. Arnold
Bale tie, Wynkoop \& Bloomingdale

 Barrel and box, moth-proof, M. L. Thompson.
Barrel washer, H. Binder.
 Bed bottom, T. \& O. Howe
 Bed bottom, G. S. Walker

Bedstead, wardrobe, Hand \& Cauli....

Boiler brooms, operating. A. C. Cock Boots and shoes, making, Hurst \& Miller
Bottle stopper, H. Martin.
Bottle stopper fastener, L.
Brake, car, J. Ramsey, Jr.
Brake for railway carriages, R. D. Sanders rake for railway trains, safety, L. Blanck
Brake, horse, I. Spitz
Brake shoe, W. McConway (r).
Brick kiln, E. F. Andrews
Bridge eyes, making. A. Schneiderl
Bridge, self-adjusting, B. Williams
Buckle, trace, Landon \& Decker.....
Burial apparatus, Patterson \&
Burial casket, w. Hamilton

Car coupling, L. Gasser.
Car coupling, \mathbf{C}. Gifford
Car coupling, c. A. Rob
Cars, dust arrester for railway, A. Clarke ..
Carbureter, gas and air, Dusenbury \& Winn
Carriage seats, corner iron for, w.B.C.Hershey... 2041,426
Carriages, reversible handle for. A. Shoeninger.. 204,385
Castings, moulding dovetails, Burdick \& Easterly 204,129
Castings, moulaing dovetails, Buraice \& Easterly
Celluloid, etc., core and tube former, J. W. Hyatt. 24,2422
Celluloid tubes and hollow articles, J. W. Hyatt.. 204,228 Celluloid tubes and hollow articles, J. W. Hyatt... 204,228
celluloid bar or spring coater, Hyatt \& Burrough 204,229 Celluloid bar or spring coater, Hyatt \& Burroughs 204,229
Chair, convertible, M. V. Lunger.... 204,346
Chair, invalid, E. C. Jones ...204,231
Chuar, rock, A. Saunders....
Churn, Barrett \& Smith..............
Churning apparatus, A. N. Myers...
Clasp for ribbons on rolls, H. G. \& C. G. Gubert. 204, 2045

clod crusher, C. R. Polen, Sr. 204, 204247
clothes drier, W. F. Wilson.... 204,179
Clothes pounder, O. Schindler.............................. 204,379

Corpse preserver, Miller \& Schnee..2047 204,220
Crean, apparatus for raising, J. W. Brady204,1127

Draught equalizer, J. Branning...................
Drilling apparatus, well, J. B. \& G. R. Elliote
Drilling machine, metal, D. W. Pond.....
Drills, spring hoe for grain, c. E. Patric
Drills, spring hoe for grain, C. E. Patric.
Drying kiln, E. .T. Gennert............
Engine cylinder. steam, G. E. Banner............. 20
Engine, wind, H. N. Hill
Escapement W A. Wa
Escapement, W. A. Wales......................... 2044,400
Exavator and plow, W. M. Smith 204887
204,268
Fence, hedge, I. O. Childs...
Fence, iron, F. R. Martin...
Fence post, H. A. Pierce....
ence, wire, W. H. H. Frye

irearm, revolving, B. F. Joslyn.......... 204,334,
Firearms, extractor for, B. F. Joslyn.......204,336, 2
 Fruit pitting and cutting machine, c.
Fruit pitting machine, A. T. Hatch...
Furnace, brass melting, J. Fletcher..
Furnace door, P. S. Kemon....
Furnace, ore roasting, \mathbf{c}. Stetefeld
Game counter, C. B. Wessmann......
Gas, making illuminating, H. W. Ad
Game counter, l . B. . . Wing
Gas burner, W. Andeting.
Gas hurners, attachment
Gas meter, A. C. Blount.

