grientifir Ammaria.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
publisged weekly at
NO. 3 ' PARK ROW, NEW YORK.
O. D. MUNN.
A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included...
One copy, six months, postage included
 gratis for erery club of five subscribers at $\$ 3.20$ each \ddagger additional copies at
same proportionate rate. Postage prepaid.

The Scientific American Supplement

 The safest way to remit is by draft, postal
Address MUNN \& CO., 37 Park Row, N. Y

VOL. XXXVIII., No. 9. [New Series.] Thirty-third Year NEW YORK, SATURDAY゙, MARCH 2, 1878.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT INO. 113 ,

II. t

 V. MEDIINHEAND. HingibNE.-The Morbis Anatomy of Yellow. Fever.

opposition to patents natural

Hello, Pat! what are you doing there?" cried the driver of a horse car the other day, to an Irishman at work in an excavation for the new Elevated Railway.
"Arrah, now!" was the prompt reply, "I'm digging the
Ever since the march of improvement began every notable advance in material progress has been the occasion of much grave digging. Materially as well as morally, we rise on since vested interests are no more willing to step down and since vested interests are no more willing to step down and
out than are ancient habits or over-lived individuals, it is very natural that there should prevail, especially in circles interested in and dependent upon established conditions, a more or less pronounced objection to the frequent changes incident to rapid progress in material civilization.
When stage lines, with low fares, were first placed upon our streets the prosperity of many worthy people, whose business had been to furnish other means of transit, received a severe check; and it was not surprising that they should look upon the invading omnibuses as little better than public nuisances. But the larger part of the community were benefited by the change, and the improvement carried the day. The parties to the contest changed, but the principle did not, when the street car subsequently crowded out the omnibus.
Each adyance in rapid transit only paves the way for one still more rapid; and to-day the contest goes on between the interests vested in street car lines and the projectors of steam roads. What was but lately an innovation, a movement of moters lustily protest that there ought to be some limit to the mania for speed. Progress was good so long as it was their progress; it ceases to be good the moment it builds up rivals and curtails their profits, the demands of the public to the contrary notwithstanding.
Only the other day a new era in the progress of humanity was begun by the invention of what seemed to be the greatest possible improvement in the means of transmitting intel ligence. The benefits of the electrictelegraph were incalcula ble, and its cheapness seemed to be surpassed only by its celerity. The business of supplying and caring for telegraphic apparatus speedily became very great and remunerative. But one daya man comes along with a couple of smal wooden boxes and a coil of wire; he talks into one box and his voice is heard miles away by whoever will place his ear at the mouth of the other box. Straightway the elaborate and costly machinery of the printing telegraph is, for many uses, antiquated, and the financial grave is dug for many interests vested in the means and methods of transmitting in; telligence soon to be largely superseded. That the owners of the old should resent the change is natural; but cheapness and convenience win, and the stream of progress flows on ral acclamation of the community to whose immediate benefit every improvement accrues.
So it ever has been; so it ever must be to the end of time. And the more rapid the progress of any age, the more numerous must be its graves. It is not surprising, therefore, that at a time like the present, when inventors are so active and fertile, there should be a numerous and influential class which feels that after all so much progress may be the reverse of desirable. And since our national patent system has been to so great an extent the mainspring of the rapid changes of recent years, it is not surprising that it should be the subject of no little animosity. It is not surprisingeither that in so many cases the opposition to patent rights should come from those who have reaped the largest benefits from the privileges they confer. The moment an inventor ceases
to invent and becomes a manufacturer and merchant, that moment his interest in patents is completely changed. So far as the patent system conserves his interests and protects him in the enjoyment of his temporary monopolies he can look upon it as a blessing; but it becomes obnoxious just when and so far as it helps to raise up against him a better furnished and more successful competitor. So likewise with manufacturers and special users of patented articles and pro cesses. From their point of view the inventor is a public benefactor so long as they have the exclusive right to control his actions. They are willing that he should be encouraged -until he carries his grist to another mill; then they would suppress him as a nuisance, or curtail his right to the fruits of his own brain, at least so far as to prevent his keeping his inventions away from them.
But these two do not exhaust the parties to this controversy. The largest stake is held by the public at large. By the will of the people the patent system exists neither for the protection of manufacturers nor the rewarding of inventors. It was established rather for the advantage of the whole to accrue from the encouragement of invention and the publication of its results. That this end has been attalned by the system to a degree surpassing the most sanguine expectation of its founders is beyond question. That it will be even more beneficial in the future is all but certain, since progress is cumulative and its ratio of advancement geometrical. In the perpetual feud between new and old the nation can take no part. It is a feud which can end only by the cessation of all progress. Secure in the knowledge that the fittest will survive, the nation is therefore willing to let each day's conflict be settled by the inevitable and impartial laws of trade. The livelier the struggle the more rapid
must be the progress and the greater the public beneftit to accrue therefrom.

AMERICAN MANUFACTURES AND PRODUCE ABROAD

Mr. Moran, of the American legation at Lisbon, Portugal writes that our trade with Portugal could be much increased with proper exertions. There is a rich market there for cheap bleached and unbleached cotton cloth for printing, ver $\$ 3.000,000$ worth being imported from England annually to be printed with designs suited to the national tastes. Portugal imports textile fabrics from Fngland to the value of nearly $\$ 5,000,000$ annually, much the greater part being cotton goods. There is also a good field for American agricultural machines, mill machinery, etc. Sewing machines are now largely sold there.
The American Consul at Rotterdam thinks there will be a large increase of our trade with the Netherlands when the present stagnation ends. The extreme cheapness of Dutch abor allows of the home production of many articles more cheaply than they can be offered by the United States even with the aid of machinery, yet there is already a fair trade in certain special productions of the United States, such as petroleum, tobacco, cotton, corn, rosin, turpentine, and toves. The imports of Indian corn are rapidly increasing, and if the best modes of utilizing it were more fully known it would rise to a very important branch of commerce. Our cottons are now competing successfully with those of Engand and France.
From Glasgow our Consul writes that there is a growing demand in Scotland for American machine made wooden ware of all kinds, such as tubs, furniture, brooms, doors, mouldings, casings, etc. He thinks that if our manufacturers were as enterprising in pushing the sale of tbeir goods abroad as they are at home, they could soon secure a practical monopoly of much of this class of manufactures. There is a ready and increasing sale for agricultural tools and builders' hardware, especially locks and hinges. The market for American butter and cheese has fallen off, owing to the inferior quality of some of these goods lately arrived; the superior qualities will always have a good demand. The im portation of fresh meats has become an important and permanent feature of trade.
Mr. King, American Consul at Bremen, writes that our manufactures are selling there quite largely. For years past two of the largest manufacturers of mowing and reaping machines have had their European headquarters in that city, and the number of machines sold by these and other similar houses in other German cities has been simply enormous. Several agencies for small agricultural implements and tools have met with marked success; and hundreds of American windmills are replacing those of the ancient style. A significant sale by one American house was a complete utfit of locks for the new post office, where the American system of lock boxes is being introduced. The trade with us in German woolen and cotton goods is much decayed;many houses that had branches in America have been compelled to seek other markets. The Consul thinks that a great trade will eventually spring up for our manufactured articles, but these must be made so as to adapt them to German tastes.
The American Consul at Nuremberg thinks that our trade throughout Germany would be greatly increased if agencies were established for the introduction of our manufactures and produce, which should be conducted by first class business men, and due care taken that the wares placed upon the market are fully up to what is claimed for them. The Con ul suggests that leading manufacturers combine and form an aseociation for erecting in Hamburg or Frankfort-on-the Main an exposition building or American bazaar, as a per manent depot of supply for their staples. Or, if this was found impracticable, smaller associations could be formed by a dozen or so of first-class manufacturers for the sale of staple articles of manufacture.
The report from our Consul at Bradford states that American watches are rapidly displacing the English and Swiss our agricultural implements and mechanics' tools are of acknowledged superiority; our roofing slates and lumber can be made to supplant those of Norway; the trade in pork and beef is fast growing in importance; that the sale of butter and cheese is astounding, the latter being sold as " Cheshire;" petroleum is a necessary of life; importations of lard, tallow, and eggs are increasing; apples are largely imported, as ar also potatoessfand dried and preserved fruits. A market will be found in time for California and Pleasant Valley wines, which have an increasing reputation. The Consul thinks that the effect of our duties on wool and dyestuffs has considerable influence in preventing the free competition of our woolen goods in foreign markets, as American wool is luster less, and the manufacturer must import the raw material and pay daty on it, if he desires to compete in the forelgn market or luster goods.
The Consul at Basle writes that since the introduction into he Swiss market a year ago of American canned goods the trade in that article has acquired important proportions. During last November alone there entered Basle about 60,000 pounds of canned beef, ham, and tongue. These products enjoy the highest reputation, and a large increase in their use is predicted.
The Oommercial Agent at Gaboon, in Africa, in reporting an expedition he had recently made up the Agowe river, says hat the trade of the valley in India ndeber, tvory, and ebony is mostly carried on by English and Germans, sm states that as the interior of Africa is now rapidly opening and develop ing valuable resources, it is much to be regretted that A meri can merchants are not taking a larger part of its profitable

The Commercial Agent at Belize, Honduras, reports that
for many years British Honduras has depended wholly upon us for its breadstuffs and provisions, and of late years for most of the articles classed as "groceries." American boots and shoes, kerosene oil, axes, carpenters' tools, shovels, spades, hoes, etc., are much dealt in. The largest article, however, in which there may be an extension of commerc s cotton cloth which the Consul thinkscould be much mor largely sold if the pieces were put up in eighteen, twenty four, and thirty-six yard pieces, and folded in even yards, in the English fashion, as they would be much more convenient or the retailers, who under the present arrangement prefer English goods.
Mr. Osborn, our Minister at Buenos Ayres, writes that the chief obstacle to enlarging ourcommercewith the Argentine Confederation lies in the absence of direct steam communication between the United States and the ports of the rive Platte. No steamers run between the two countries, excep an occasional vessel from Buenos Ayres to New York unde the British flag, which returns to Buenos Ayres by way of Europe. There are, on the contrary, eleven steamer lines keeping up direct and rapid communication with Europe, of which five are British, four French, two German, and one Italian. As the result of these reliable means of communication the merchants and manufacturers of Europe get nearly all the trade.

THE RAIL PUZZLE.

We have received so large a number of answers to the practical puzzle" relative to weighing a railroad rail, which we recently published, that we cannot find space even for the initials of the respondents. The problem was as follows
A civil engineer working on a railroad in Illinois recently had occasion to weigh one of the iron rails. The rail was 30 feet long, and was supposed to weigh about 400 pounds. His only means of weighing was a pair of balance scales capable of weighing only 25 pounds. Query: How can he weigh the rail correctly with such scales?
Our correspondents' letters exhibit various methods by which it is proposed to solve the question, but the number of erroneous answers is remarkable. Out of nearly a hundred replies now on our desk, not half a dozen are exactly correct. Some writers neglect the conditions of the problem, and propose to weigh the rail bodily with apparatus made out of planks, or with divisible counter weights, which are manifestly excluded. Those who propose to weigh the preponderance of an unequally balanced rail, either fail to say where the scales are to be attached, an important matter where leverage is considered, or else apply the same wrongly. A large number assert that when a rail that is balanced on its center is moved 1 foot in either direction, the preponderance will be but 1 foot, whereas it is of course 2 feet. Many evidently have the right idea, but express themselves so obscurely as to leave us in the dark as to their exact meaning. Others preferto view the simple question as a grave mathematical problem, and send us elaborate formule, which, while doubtless correct"enough, seem ingeniously contrived to befog the whole subject.
Our readers will excuse our failing to make individual re erence to their letters, and at the same time close the discussion with the publication of wo correct methods-one by the correspon dent who sent us the problem, the other by an old and valued contributor to these col umns.
J. T. C.'s answer: The engineer first accu rately measured the length of the rail, found it to be precisely 30 feet, and then by measure ment found the middle, which he marked. He next laid the iron rail across the sharp edge of an oak fence rail, so that the midd mark rested exactly on the sharp edge. He found that the iron rail exactly balanced on the edge of the fence rail. See Fig. 1. This proved that the iron rail was of equal thick ess and weight throughout its entire length He then moved the iron rail 6 inches, say to he right of the middlan edge of the fence rail to the left end of the ron rail would be $14 \frac{1}{2}$ feet, and to the right end $15 \frac{1}{3}$ feet. Then at 6 inches from the end of the long section of the iron rail, he tied around it a small strong cord. To this cord he attached the balance scales. See Fig. 2. This gave the exact weight of one foot in length of the rail, to wit, $18 \frac{1}{3}$ pounds, or 40 pounds to the yard in length, which it was ontracted to weigh
F. G. W.'s answer: Place the rail at right angles and hori zontally across a delicate support, say the sharp corner of another rail, so that the long end shall weigh just 20 pounds, or some other definite weight within the range of the scales; then divide the whole length of the rail by the difference in the length of the two sections; then multiply the quotien by this weight; the product will be the weight of the rail.

PATENT OFFICX MODELS

We have before us an argument in favor of the abolition or modification of the patent office model system, prepared by Mr. H. Howson, of Philadelphia, to support a petition In that behalf, which has been signed and forwarded to Con-
gress by numerous patentees and others interested in pa ents. Mr. Howson is himself a patent solicitor of long.ex perience. That he has carefully studied the question he discusses is evident from the exceedingly able and exhaustive manner in which he marshals his statements, with which probably a majority of our readers will fully concur
The principal points of Mr. Howson's argument-to which we shall have further reference hereafter-are summed up in the following ten sentences:
First. That it has hitherto been the practice of the Commissioner of Patents, under the law, to demand a model with every application for a patent in which the character of the invention admits of one
Second. That the making of these models is a serious tax n inventors, involves the premature exposure of inventions, and needless delay in making up applications for patents, and detracts from the revenue of the Patent Office, because the demand for models frequently deters inventors from aking applications.
Third. That models are not as a rule necessary for attorneys in preparing applications for patents, or for Examiners of the Patent Office in the performance of their duties
Fourth. That with rare exceptions complete well executed drawings afford more ready means of determining the character of an invention, and should be, in any case admitting of them, sufficient for the interpretation of the specifications forming part of the patent.
Fïflh. That owing to the furnishing of models, there is a
endency in the Patent Office to admit drawings which a

THE RAII PUZZLE.

wanting in fullness and perspicuity, and which would not be admitted in the absence of models, an evil resulting in the delivery of patents which cannot be easily understood without the aid of models
Sixth. That the models deposited in the Patent Office occupy a large amount of space which could be devoted to much more useful purposes.
Seventh. That the increase of models must eventually in volve the necessity of either disposing of many of them to make room for the rest, or of finding room for the rapidly growing collection in places outside of the Patent Office.
Eighth. That the models deposited in the Patent Office ar arely working models, but generally fragmentary, and in many cases distorted representations of the machines they are intended to represent, and are consequently unfit for an ndustrial museum
Ninth. That an industrial museum worthy of the name can be best established by permitting patentees and manufacturers to deposit at their option and at their own cost properly proportioned and working models of patented machines which have proved to be successful in practice.

PROFESSOR RICCO'S NEW OPTICAL EXPERLMENTS.
Tenth. That ample provision should be afforded to invent ors and the public for the examination of drawings of patented inventions.

[For the Scientific American.]

TWO BEAUTEFUL OPTICAL EXPERIMENTS.
A ray of sunlight entering a dark room horizontall through a little vertical slot, f (Fig. 1), passes through a converging lens, L, and then through a prism, P, after which it falls upon a little mirror, S^{\prime}, whence it is reflected to a second mirror, $\mathbb{S}^{\prime \prime}$, which, in turn, throws it upon a white wall, M. The lens and the prism should be so adjusted that a solar spectrum not large but quite brilliant may be ob-
tained upon the wall, M. The two little mirrors are fastened to two vibrating springs inclined 90° to each other, and each 45° from the vertical. These springs are secured to a firm support by means of screw clamps. By changing the position of the clamps, the rate of vibration of the two springs may be varied at will
If the springs vibrate almost in unison, there will appear on the wall a magnificent ring composed of the colors of the spectrum, which will seem to rotate about its axis and about its diameters, assuming successively the forms of an ellipse, f a circle, and of a right line
If the springs vibrate as octaves, we shall have upon the wall, or screen, an oscillating variegated figure 8. If the ratio of their vibrations is less simple, we shall obtain a great variety of complex curves resembling the intertwining of variegated ribbons; in a word, the beauty of the well known curves of Lissagous is here enhanced by the splendor of the rainbow colors.
If, instead of using the prism, we substitute a revolving disk, D (Fig. 2), containing little windows made of colored glass, the above curves are broken up into a series of elegant little disks of various colors, resembling necklaces of brightly colored gems intertwining with rapidity
The same effect is produced by looking through this re volving disk at the colorless curves of Lissagous.

SCIENTIFIC JUGGLERY.

We have often thought that if professional conjurers
would substitute for such time honored tricks as making omelettes in hats, and causing cards to appear and disappear, some of the wonder working performances of the electric current, they would succeed much better in mystifying, amusing, and perhaps instructing their audiences.
Mr. Heller, a clever magician now performing in this city, has a neat way of bringing the electric current to his aid where it would hardly be expected. For example, after borrowing a few watches he places them on a plate which he suspends by a bit of string to alittle bar between two cords from the ceiling. Suddenly a flash comes from the bar, the string is burned, and plate and watches fall with a crash. The broken plate and ruined watches are restored by shooting them out of a gun, against a framed black square, also suspended by cords from the ceiling, and here again the electric current actuates mechanism which causes the lightning-like disappearance of an interposing screen. The current again works the hammer of a glass bell apparently suspended by a mere thread, but which accurately counts the number of spots on chosen cards. In electromusic Mr. Heller is an adept. He has a dozen or more drums which he heaps up on a kind of barrow in the middle of his stage. Then seating himself at his piano, at some distance away, he plays a lively air, to which the mysterious drums at first beat time, and then play a deafening accompaniment. Of course, concealed hammers operated by electromagnets are at the bottom of the puzzle. The Heller or chestrion is a much more elaborate contrivance. It is a good sized parlor organ, provided with a supplemental keyboard, and surmounted with a bewildering mass of brass tubes and apparatus. An air played by the performer is suddenly accompanied by a chime of large bells at the further end of the hall, then by small bells near by, then another organ near the ceiling issues notes like a flute, a chorus of sleigh bells in still another part of the hall joins in; the music imitates a storm, and a huge iron plate in another quarter rattles itself, while from a box near the ceiling issues the sound of fall ing rain. Finally two sharp explosions from miniature guns near the roof are heard, the lights are turned down, and on the organ ap pear revolving Geissler tubes, flashing out green and blue light in the weirdest manner, as the curtain shuts the magician and his instrument from view.
Healso shows a number of other ingenious illusions, some of which depend upon remark able automata and many upon electrical ac tion. Upon a simple trapeze suspended from a bar over his stage, he seats a doll dressed as a gymnast. The trapeze is set oscillating, and thereupon for some ten minutes the dol goes through a series of performances, the very variety of which baffles all theories as to how the figure is worked. The hands alone touch the trapeze bar, and the mechanism in the body is necessarily governed through the ropes and cross piece; but it is not so easy to explain how, in concluding, the figure lets go with its hands, throws a somersault, and catches on its toes, continuing the swinging in that position. Another automaton is a peacock, which cries, moves its head, eats, and spreads its tail at the order of the conjurer. Still another is a doll which emerges from a box, seats itself on the edge, goes through many laughable antics, and ends by smoking a pipe, puffing forth the smoke in the most natural manner.

One portion of the Gilbert Elevated Railway, between Worth street and 42 d street, New York city, 3 miles in length, is to be opened for traffic March 1. The rails are now laid and the stations are in progress.

