remain on the plate in the form of a thin skin or film. This film is easily removed with a horn spatula, and then dried and weighed. If it is desired to determine the fats alone, this film may be extracted with ether, and thus the two most important constituents of milk very quickly determined. In many cases it is sufficient to know the total weight of the principal solid constituents of the milk, hence also the amount of water, for which scarcely two hours are required. -Public Health.

The Hoosac Tunnel.

This tunnel, near North Adams, Mass., which was completed some time ago so far as to admit the passage of trains, was found to need an extension at the east end in order to prevent the downfall of the rocks upon the track from the cliff at that end of the tunnel. This facade and buttress have just been completed, and the tunnel and track are pronounced in prime order, and ready for all the business which may seek to pass through the great bore. The artificial façade is constructed of granite, some of the blocks weighing from four to five tons each. The arch extension is about 25 feet, and the facade about 60 feet long by 40 feet high.
The Springfield Republican says: "Only one track is laid at present in the tunnel. The trains are run by telegraph, passenger trains being allowed ten and freight twenty mi nutes to pass. Three lights, equidistant, are affixed to the sides of the tunnel, dividing the distance into four sections. The lights are for the purpose of enabling the engineers to regulate their speed. and they are required to maintain a uniform gait the whole distance. At the central shaft two lights are displayed, to indicate when the summit is reached and the grade declines-which it does each way to afford drainage, being sixty feet lower at each portal than at the central shaft. As the trains plunge into the impenetrable darkness the time is recorded, and again when they emerge, by operators situated at either end of the tunnel, and forwarded to the general dispatcher at North Adams. The passage seldom varies a minute. The tunnel is never occupied by two trains at the same time, and no train is allowed to enter until the preceding train has made the exit. No equal distance of the road outside is traversed with so uniform speed, nor with so much safety, the track, which cannot be excelled, being perfectly straight. The roof of the tunnel is considered perfectly safe, not a piece the size of a walnut having been detached for a year, and about a mile and one third of brick arching having been built to sustain all doubtful localities, in sections from ten feet upward. Still, the roof is under constant examination by men on top of an elevated carriage, which is propelled along the road. Admittance to visitors is strictly denied. Occasionally the tunnel is so free from fog and smoke that, standing at the central shaft, daylight can be discerned at both portals, showing about ten feet in diameter, but usually light can be discovered in only one direction, that from which the wind comes, the current driving the smoke before it up the shaft, and leaving the other half of the tunnel motionless and usually dense with smoke and fog. A fioor composed of oak, fourteen inches thick, let into grooves cut into the rock on a steep incline, prevents any pieces detached from the sides of the shaft from falling on to the track. At the summit of the mountain the opening of the shaft is inclosed by a stone wall twenty-feet high.'
Subsidiary to the great Hoosac Tunnel is that of North Adams, nearly two miles west of the former. This work, too, has just been completed. This is lescribed as a skew arch, and the work is spiral; the abutments are parallel, but not at right angles, crossing the road diagonally. The stones are dressed spirally, and three or fourpatterns to each individual block had to be furnished the cutters, and no two stones are alike. The continuation of the tunnel is 65 feet in diameter, 26 feet inside of the completed work, with a plain façade of 40 feet high and 50 feet long, and immense wing walls; the coping is surmounted with an iron sidewalk and fence 75 feet long. This structure is a substitute for the dangerous old Furnace Hill bridge.

Progress of the Metric System.

At a late meeting of the American Metrological Society Prof. J. E. Hilgard, of Washington. in an address on the "Progress of the Metric System," stated that the United States had not yet been formally constituted a member of the International Bureau of Weights and Measures. The preliminary steps had been taken toward this end, and the matter now rested at the disposal of the Senate Committee on Foreign Relations. The French Commission is busy in preparing the new standards of weight and measure. This is a work requiring extreme accuracy to obtain uniform results. The manipulations are of extreme delicacy. Special apparatus and tools have to be invented and made, and months elapse in their construction. These difficulties will be eventually overcome, and the progress already made is a guarantee that standards of uniformity and accuracy will be made for distribution among the nations which take part in the convention.
In regard to metric standards for the United States, Professor Hilgard said that the standards for separate States had been tendered to each, and were very generally accepted. About thirty States have received their standards and placed them on exhibition in public places where they will be accessible for reference. These standards consist of two metres, a kilogramme, a half kilogramme, a litre and a half-
litre. Professor Hilgard mentioned that, when the original
iron metre, now eighty years old, was compared with the modern standard, it was found that its difference was less than a thousandth of a millimetre. The trial was made when the iron metre was sixty-seven years old, and it is conclusive in favor of iron for this use, as its changes are so exceedingly small. But a comparison between our standards was less favorable. The iron metre was compared with the standard yard, the latter being of bronze, made to be used at a temperature of 62° Fahr. These differed by the 4000th of an inch, which is a very sensible alteration. Several new methods of making quick approximate compari sons between yards and metres have been considered by Professor Hilgard. Two of these he mentioned. Divide a yard into four equal parts by bisections. Then put together three of the four parts and divide that length into eight parts by bisections. The addition of one of the eight parts to the yard will give a metre within a fraction. Another method, which is preferable on many accounts, is to divide 45 inches into eight parts, seven of which will be a metre very nearly; the 45 inches can be easily obtained by adding a fourth to the yard. It is designed to make the old standards useful by inserting little silver plugs which mark upon them the metrical divisions.

A NEW TIDE MILL.

The annexed engraving exhibits a novel form of shipmill designed to be driven by tide or current power. It con sists simply of a series of spiral wings arranged near the end of, and at an angle of 45° to, a shaft. The outer ex tremity of the latter is raised or lowered on suitable guides

and from the inner one the rotary motion of the shaft is imparted to suitable bevel gearing. The outer end of the shaft is lowered so that an angle of 45° is formed, this being considered as best adapted to allow the screw most advan tageously to intercept the passing water.
It will be noted that a second tank or ship for storage of water is here dispensed with, and that by raising or lowering the wheel to a less or greater depth in the water the motion of the driven mechanism can be regulated.

THE DREADNOUGHT TRICYCLE.
We illustrate a new English velocipede, called the Dread nought Tricycle. The beam or back bone is centered by slot on to the axle of the back wheels, and is governed by side wheels, so that the back wheels can accommodate them selves to any incline of the road. The driving wheel will thus always be kept upright; and all the strains being re-
moved, the machine can be made as light as any bicycle. It moved, the machine can be made as light as any bicycle. It ly simple, and, besides, the rider can balance himself with

scarcely any difficulty whatever. The English still seem to be much interested in velocipedes, and the improvements in their construction are very numerous. The excitement quickly died out in this country, though it will probably,
before long, be again brought over from England. The illustration is from the English Mechanic.

Fish Culture.

There are now twenty-seven States whose Commission ers of Fisheries receive, hatch and distribute the eggs of ishes furnished by the United States Fish Commission About 4,000,000 eggs of California salmon were thus distrib uted in October. Congress has appropriated $\$ 5,000$ toward preparing ponds near the Washington Monument for breed ing the carp, a European species being regarded as desirable for introduction here. The Wisconsin Fish Commissioners report a large amount of work, having hatched and distributed $1,736,000$ lake trout, $6,295,000$ whitefish, and smaller tion wheth of brook trout and California salmon. The que
will soon be determined. The hatching has been successfu with about 90 per cent of the ϵ ggs. The Fish Commission ers of Maine report an unusually large quantity of salmon principally due to the efforts at fish culture, in most of the rivers of the State. Several ponds have been stocked with black bass, as an antidote to pickerel. In the Mattawam keag River, 80,000 shad fry have been placed.-Tribune.

Anti-Fire Construction.*

One of the indispensible requirements of architecture is stability-permanence. And yet of all the buildings eve erected, how few still remain! Even that achievement of en gineering skill, the Eddystone Lighthouse, which has bravely resisted the power of the Atlantic for one hundred and twenty years, is at last undermined and must fall. The elements in their unceasing action sooner or later triumph over the proud est works of man. Of the elements at work in this destruc tion, there is none so active, so successful, as fire. With what fiendish relish does it lick up the combustible, and ruthlessly tumble the residue in shapeless ruin! History teems with its work of desolation. The cities of the Old World have all sadly suffered by its ravages: I will refer to some of them.

* reat fires of the world.

The great fire of London, in 1666, burnt for three days, destroying 13,200 houses, including many fine public build ings. The loss by this fire, if computed by present values, would amount to at least $\$ 100,000,000$
The city of New York has suffered by at least three great fires. One in 1835 destroyed 600 warehouses, which together with contents were worth $\$ 20,000,000$. Another in 1839 destroyed property to the amount of $\$ 10,000,000$; and a third in 1845 destroyed 300 stores and dwellings, valued at $\$ 6,000,000$. Charleston in 1838 suffered by a fire which destroyed 1,158 buildings, covering 145 acres. Pittsburgh, in 1845, lost by fire 1,000 buildings, valued at $\$ 6,000,000$. Albany, N. Y. some years since lost in steamboats and buildings $\$ 3,000,000$ St. Louis, in 1849 , lost $\$ 3,000,000$ in steamboats and build ings. Philadelphia, in 1858, lost 300 houses. In 1845 two thirds of the city of Quebec, comprising 2,800 houses, were swept away by fire. The city of St. John's, Newfoundland repeatedly damaged by fire, was nearly all destroyed in 1846, when 6,000 people were rendered homeless. Troy suffered severely in 1862. Portland, in 1866 , lost $\$ 9,000,000$, includ ing the loss of 1,600 buildings. Chicago, in 1871, and Boston, in 1872 , were devastated to the extent of more than $\$ 200,000,0: 0$; and quite recently a devastating fire has almost entirely destroyed the city of St. John, N. B. But these marked fires do not alone measure the work of destruc tion; much is due to the smaller fires, which make up by their frequency what they lack in proportions. Constantly at work, little by little, year by year, the aggregate of ruin hey accomplish is fearful.

nnual losses by fires.

A record kept by the New York Insurance Chronicle shows that the loss by fire in the United States and Canada in 1876 was $\$ 75,000,000$, and in the previous year it was $\$ 86,000,000$. This record is trustworthy, as far as it goes; but I am as sured by competent authority that the loss during the last ten years has not been less than $\$ 100,000,000$ per annum not including the two extraordinary fires of Chicago and Boston. What a fearful havoc! Is there no remedy?
The losses in the United States and Canada during the last twenty-five years aggregate an amount which would have sufficed to have rendered all the buildings approximately fireproof. A few figures will show this. The United States census for 1870 gives the value of the real estate of the country, but not the value of the buildings alone. This, how ever, may be approximated. From an estimate made upon the property within certain limits of the city of New York the value of the buildings was found to exceed considerably the value of the ground built upon. The buildings in the rural districts, however, are of much less value than the land, perhaps not half. A fair average for the two-city and country-would perhaps be one third the value of the real estate. The census for 1876 puts the value of the real estate at about $\$ 9,900,000,000$, one third of which, $\$ 3,300$, estate at about $\$ 9,900,000,000$, one third of
000,000 , then, is the value of the buildings.
This result may be tested by estimates upon a nother basis. It is shown in the last report of the National Board of Fire Underwriters, page 27 , that the insurance effected during the last five years averages about $\$ 5,170,000,000$ per annum; and it is shown by the records of the New York Chronicle that not more than half of the losses by fire are covered by insurance: hence the $\$ 5,170,000,000$ insured is only half of the insurable property of the country; or, the value of the property of the United States and Canada, liable to loss by fire, is not less than $\$ 10,340,000,000$. This is the value. not of the buildings alone, but of the buildings and their contents. To ascertain what portion of this is invested in buildings, it is shown by the New York Board of Fire Underwriters in their last report, page 23 , that in an average of the losses for the past eighteen years, the portion on buildngs was about one third of the whole. Taking this as au hority in the matter, one third of $\$ 10,340,000,000$ is $\$ 3,447$, 000,000 for the value of the buildings in the United States and Canada, which cannot be far from $\$ 3,300,000,000$ for the United States alone, as before shown
Of the $\$ 100,000,000$ annual loss, one third may be taken as that which was invested in buildings; and, had the buildings been of a character to resist the flames, a large part,
*A paper read at the recent Convent

