osopher, Professor Prestel," ascribes weather

the moon." Allow me to present my views.

The sun retrogrades in the plane proper of the ecliptic 50 seconds, annually; and so of course does the earth, in her own orbit, as it were; and it takes her 20 minutes and 20 seconds, in other words, 1 year, 20 minutes, and 20 seconds, to reach the same point in the heavens that she was at, say,
on December 31 last at 12 o'clock at night. Twenty minutes on December 31 last at 12 o'clock at night. Twenty minutes
and twenty seconds amounts to one day, or one rotation of and twenty seconds amounts to one day, or one rotation of
the earth, in 70 y years. In 70 years and 8 months, therefore the earth loses one day on the stars; and it will be seen in a moment or two that she loses the same amount, in the same space of time, on the winds and the weather; for the winds do not circulate round the earth, as supposed, but the earth turns-retrogrades round-to receive the winds, supposing them to blow from the same quarter.
To give a proper idea of what we mean, suppose the sun to be moving retrogressively at great velocity, and the earth in consequence to be ever meeting and stemming an etheric
current: suppose too that the earth's rotary motion is current: suppose too that the earth's rotary motion is
stopped, and that nothing but her orbital motion and the sun's is going on. In such a case, the etheric current would ever strike the earth on one point of her surface; that would be the point or side of her that is ever lying next to the cur rent. Now suppose that she retrogrades round her axis in a year, an amount equal to the 1.365$\}$ of a rotation-an amount equal to 20 minutes and 20 seconds-the point on her surface that directly breasted, so to speak, the etheric breeze last year would not breast it this year; but one, a little more than 5° east from it, would. 'Thus, by the earth's westerly parallel current of storm seems, to all appearance and to meteorological evidence, to circulate easterly round the earth, while in reality it is the earth that is turning round to receive the ever parallel-flowing etheric breeze: a current that must ever flow directly from the sun as radiance, or be the result of the earth's being drawn, asit were, through ether by virtue of the sun's velocity, as a vessel propelled
through water meets the still water as if it were flowing in through water meets the still water as if it were flowing in
a current against it. This, I say, would give the winds and weather an apparent easterly motion round the earth in some seventy years : and thatis exactly as Mr. Schott finds it. I cite again from Harper's Magazine:

Mr. Schott finds no perceptible secular change in the temperature of the country, nor any decided connection between our temperature and the variations in solar spots For ten stations the mean temperature has been commuted for every day of the year, and it appears from these tha large tracks of country, and progress in an easterly direc large tracks of country, and progress in an easterly direc-
tion." Thus I connect even the winds and the weather tion." Thus I connect even the winds and the weather
with solar retrograde motion, and I think that the moon has nothing to do with the weather. She, in every 18 years,and all along through the 19 th year, so conjoins with the sun and earth that the four-sun, earth, moon, and storm cur-rent-are in line, or parallel with each other, and so a sor of periodic 19 years storm occurs. But the moon has no more to do with raising it than the surface of the earth ha with the so called seventy years oscila
When astronomers, meteorologists, and other scientists, can clearly see the sun and the whole solar system moving retrograde in the plane proper of the ecliptic, they will be much more able to tell how and why phenomena occur; and much more able to tell how and why phenomena it will cost them less
Gloucester city, N. J.

John Hepburn.
The Corliss Engine at the Centennial.
To the Editor of the Scientific American
While watching the movements of this celebrated engine ments upon former engines of the its details two improveimportant of these eonsists in the placing of the valves in the heads of the cylinder instead of in the cylinder casting. This disposition of the valves does away with the eight tri angular cavities in each cylinder which form the steam
 ports, namely, A, the inlet, B, the exhaust ports. The diagram shows a cross section at one end of a cyl-
inder through the center of the ports, the aggregate capacity of these ports being equal to from two
to four per cent of the steam used to four per cent of the steam used in working the engine. By placicg
the valves in the heads of the cylinder, they are brought almost in contact with the piston (when at the end of its stroke) from end to end of the ports, thus effecting a saving of the two or four per cent of steam usually wasted, and of coars
omy of the engine in like proportion.
omy of the engine in like proportion.
Could a like improvement be made
locumotives, the consequent saving of fue the valve gear of locumotives, the consequent saving of fuel ought to give the
inventor a fortune in a short time. In locomotives, from inventor a fortune in a short time. In locomotives, from
five to ten per cent of the steam used is wasted in the huge passages between the valve and piston: and more, another benefit (aside from the direct saving of from five to ten per cent of steam, owing to the more perfect appropriation of the steam used, consequent upon the close proximity of the
valves to the piston) is lost. Some engineers argue that valves to the piston) is lost. Some engineers argue that
short steam ports are of but little benefit in any case, espe cially in engines working under a high degree of expansion. By what line of sophistry they arrive at such a conclusion, I know not. They might, by the same reasoning, say that
sages long enough to contain half of the steam used. It sages long enough to contain half of the steam used. It
makes no difference whether the steam is exhausted from the cylinder at 90 or at 5 lbs. pressure to the inch; the percentage of waste will be precisely the same. The cubic capa. city of the steam passages between the valve and the bore city of the steam passages between the valve and the bore
of the cylinder represents exactly the cubic quantity of of the cylinder represents exactly the cubic quantity of
steam used over and above what is needed to work the enginem used over and above what is needed to work the sooner locomotive builders realize this, the sooner the. will be prepared to reduce the length of these wasteful passages.
Anotherimprovement noted in this engine consists in the nterposition of a short link between the rocker arm and he arm upon the valve stem, in such a way as to cause the valve to open and close quickly, and to remain open and almost stationary for a considerable interval. thus giving a very free exhaust and a timely and rapid opening and closing of the valves.
F. G. Woodward.

Worcester, Mass.

The Bude Canal in Cornvall, England.
To the Editor of the Scientific American
The Bude Canal, from Bude to Launceston, is said to have been working for fifty years. It was intended to transport ore from Launceston to Bude, but is now principally used to carry coal, and sand from the coast for manure for the farms. In order to carry the canal over the highest points of the land, a very simple and wonderfully effective plan has been carried out. The canal is made in sections, each on a level; and each two sections are joined by an inclined plane, on which are laid grooved rails. The barges, which are built or the purpose, are hauled bodily out of the canal laden with, say, 4 tuns of coal or sand, and drawn up the tramway with a chain, and launched again in the next section of canal, which starts from the top of the hill. There are in he entire length of the canal six of these planes, three between Bude to the highest point, and three down into Launceston. At Marham, about 17 miles up the canal from Bude, is the first ascent. I judged the length of the incline o be 800 feet, and the gradient 1 in 6 ; the total ascent, herefore, is about 130 feet. The barges are small, of about 5 feet bjam, and 15 feet in length, and are loaded with 4 tuns, total weight being 5 tuns each when loaded. Fitted on the flat bottoms are four wheels, which run in the grooved rails, laid like an ordinary tramway, in two lines up the incline. An endless cable passes between the rails, up one and down the other, and round large wheels at either nd. These wheels are fixed horizontally. The wheel of he upper end has a strong shaft or axis, which descends nto a chamber below, where, by means of cogged wheels, it is connected with an enormous water wheel, the moving power. This water wheel is overshot, and has a diameter of 60 feet. The barge to be hauled up having been placed in position and fastened to the endless cable chain, the water wheel is set in motion, and the barge is rapidly drawn to the top of the incline and floated again in the upper canal. About two miles further up I came to Hobbacott, where is the second incline. This is longer and steeper, and is worked in a different manner. This incline is 900 feet long; total rise, 275 feet. At the top are two wells, 20 feet in diameter and 225 feet deep. At the bottom of each is an escape for water to flow out into the lower canal. Suspended in these wells, by massive cables from a horizontal roller, are two huge iron buckets, capable of holding 60 hogsheads of water each, and weighing, when full, 16 tuns. These are so arranged that, when one bucket is at the top of one well, the other bucket is at the bottom of the other. The bucket which is at the top of the well is filled with water from a sluice, and is allowed to descend; and in doing so, it raises the bucket in the other well, which comes up empty, the water having escaped through a valve which opened mechanically when the bucket reached the bottom. The alternate rising and falling of these buckets sets in moion the endless chain cable on the incline; and by means of cogged wheels, the power is so mul iplied that the descent of the bucket, weighing 16 tuns, into the well 225 feet deep. uffices to haul a barge weighing 5 tuns up the entire length of the incline, 900 feet, in the space of $4 \frac{1}{2}$ minutes. The whole of this machinery is worked by two men and a boy, with no further expense than the oil for the machine.
About nine miles further up the canal, at its highest point, is a vast reservoir messuring 60 acres, which supplies the water for working the canal.
London, England.
B. R. Plante.

The Supposed Planet Vulcan.

To the Editor of the Scientific American:
Please to add my testimony to that of others regarding the intra-mercurial planet. Unfortunately, when I saw the planet, supposing it to be known to astronomers, I did not attach such importance to the subject as to induce me to make memoranda, and at this distance of time can only think that it was about the year 1860 . I was residing then in Washington Territory, and was superintending ome work on a prairie, a few miles from Fort Vancouver, on the Columbia River. A range of mountains was in the distance, from behind which the sun had reached an alti-
tude of about 30° above the horizon, when a amall boy asked me what was the matter with the sun. On looking at it I saw a planet, not as your correspondent saw it, but as a perectly rounded, well defined dark spot, having with the disk a smaller relative proportion than that you have illustrated, and situated nearer the disk's diameter. I watched its progress till its completion without a telescope, merely glancing with partially closed eyes, at very short intervals. It was in the hight of summer, and the hour was so early that
sorry I can give so few data regarding an event of which I am as certain as of ny own existence. The clear but peculiar skies of that region in summer may account for the disinctness of the view.
Washington, D.C.
Richard Covington.

PRACTICAL MECHANISM.
 by Josicia rose.

Second $\overline{\text { Srries-Number } x V}$
pattern making.
Our second example, Fig. 106, is a dezign for another kind of gland. such as is often fitted to glands for pump rods and apindles. For the small sizes, the glands are usually cast

solid, and the hole is drilled out in the lathe, in which case, providing the gland is not very deep, it would be molded vertically, with the head in the nowel, and would be turned out of the solid piece of wood in the style of our previous example, treating for the moment the hexagonal part as a fiange, whose diameter must be turned to the size of the hexagon across the corners. After the turning is; done, we mark the hexagon as follows. We set a pair of compasses as nearly as possible to the radius of the turned piece that is to form the hexagon, and divide that piece off into six divisions, orm the hexagon, and in 107 ; for the radius of a circle will divide its shown in ing. 10r ; fore will divide its circumferch into sir equal parts. No that, if the compasses are correctly set, one trial will be sufficient; but if not, we must readjust the compasses and go arouud
again. Then, from these points, we square lines. as shown again. Then, from these points, we square lines. as shown
in Fig. 107, at 1, 2, 3, 4, 5, 6 ; and then, with the paring

chisel, we pare off the sides to the lines. It is not necessary to actually draw the hexagon on the circumference by joining the lines of division on the top of the fiange; for a straight edge, being applied as the paring proceeds, will be all that is necessary to produce a true hexagon. Nevertheless it is possible that error may have crept in, though we have performed the above operation with the greatest of care; it is therefore imperative upon us to apply correcting care; it is therefore imperative upon work, such as a pair of calipers to try if each pair of the opposite sides are parallel, also the bevel to verify if each angle of the figure contains 120°. Hexagon shapes are so common that a special hexagon gage is very useful; and such a gage, of the mostapproved form, is shown in Fig. 108, together with its method of application, the edges, A B, being to try the hexagon, and C D to square

the edge to the face, and the edge, E , being used as a straigh edge. If, however, we have not such a gage, we may set the bevel square, shown in Fig. 23, in the following manner: Take a piece of board planed on one side and on one edge, and let A B, in Fig. 109, represent the planed edge, from which we mark with the gage the line, C D. Then taking any point, such as I, in the line, $C D$, as a center, at a convenient distance we describe with a pair of compasses the arc, FG. We then take the compasses, and, without shifting their points at all, we rest one point on the intersection of the lines, CD and F G, and then mark the arc, H. If then we draw a line from the intersection of the arc, F G, and the arc, H, to the center, I, upon which the arc, F G, has struck, the lines, H I, I C, form the angle required; and we may apply the stock of the bevel square to the planed edge, A B, and set the blade to the line, I H, as den oted by the dotted lines. The bevel being set, we test the work as it proceeds, first cutting down one hexagonal side and then applying the bevel to gage the angle of the others; and as the diametrically opposite sides are finished
pattern work are made very fine, in fact merely distinguish

in Fig. 110. It is called a cutting scriber, and the end at A is beveled off at both sides, like a skew chisel, forming a knife edge. The end, B, is ground to a point, and both ends

are finished on an oilstonc. The point end is for drawing ines along the grain, while the cutting edge, A, is for draw ing lines across the grain of the wood. The wooden handle in the center is to enable the operator to hold it more firm. ly. It sometimes happens that the size of the hexagon is given across the flat sides instead of over the angle; and when that is so, we proceed as follows: We describe upon a piece of board, as in Fig. 111, a circle of a diameter equal to the given distance between the fiat sides. We then take a hexagon gage, or else set the bevel square to an angle of 120° : aud applying it to the planed edge of the board, we draw the line, C D, in Fig. 111, in which figure, A is the c:rcle of the size of the flat sides of the hexagon, and B E are the planed edges of the board. We next reverse the be vel; and from the opposite edge of the board we strike the line, F D, cutting C D at the point, D, where both the lines cut the circumference of the circle, A. Then from the center of the circle, A, we draw the circle, G, intersecting the point, D. The diameter of G will be the size of the hexagon across the corners.
If the gland is a long one, it will be better to make it in

halves, letting it part across two corners, as shown in Fig. 112. When a gland of this kind is made in halves, the corners at the parting are liable,from their weakness, to chip off, and it is therefore proper to make it of hard wood

Water Supply ior Towns.

The subject of water supply is one that is now engaging the attention of the authorities in many large towns. The extended drought in the Eastern States during the past summer has revived in this vicinity the enquiry for advice as to the best means of providing an inexhaustible supply f water
The city of Orange, N. J.,and the adjoining town of Montclair, both rapidly growing places, have during the past summer been exceedingly short of water, to the inconvenience of many of the citizens. Montclair lies at the foot of Orange Mountain, and the city of Orange scarcely one mile from the base of the same mountain, on which inexhausti ble springs are found by digging only a few feet. It occurs to us that the above places, as well as many other towns, similarly situated in the vicinity of mountains, might readily be supplied in the manner in which the city of Dubuque, Iowa, has recently (by accident) acquired a novel and practical watersystem. Sometime ago, in one of the bluffs, a lead-mining company met obstruction from was obtain relief the bluff was tunneled, when it was found that a copious fountain had been struck, which ran to waste for several years. But the water was most excellent, the
supply exceedingly liberal, and the headso elevated supply exceedingly liberal, and the headso elevated that the idea of utilizing it was seized by a company, the property purchased, and a system perfected which gives the cheapest and best water supply known in the country.

Origin of Wire Rope

Mr. Andrew Smith, C. E., of London, in the year 1828 first applied wire rope as a substitute for catgut, in aid of another invention of his for metallic shutters. The rats have destroyed the strength of the catgut line by eating it the position of the sheave or pulley was so placed and so nar applied groove that none but a small substance could be the mother of invention. Time rolled on, and the author watched anxiously the working of this experimental metalwatched anxiously the working of this experimental metal-
lic cord; four years were spent in experimenting, in order
to test its strength in comparison with hempen rope and chain, as regarded weight, size, strength, price, durability and economy. This required time, patience, and a heavy outlay of capital. On January 12, 1835, the first patent was obtained by Mr. Smith, and in 1839 he had obtained his fourth patent.

Stick to a Legitimate Business.

Well directed energy and enterprise are the life of Ameri can progress; but if there is one lesson taught more plainly than others by the great failures of late, it is that safety lies in sticking to a legitimate business. No man-manufacture trader, or banker-has any moral right to be so energetic and enterprising as to take from his legitimate business the capital which it requires to meet any emergency.
Apologies are sometimes made, for firms who have failed by recurring to the important experiments they have aided, and the unnumbered fields of enterprise where they have freely scattered their money. We are told that individual losses sustained by those failures will be as nothing com pared with the benefits conferred on the community by thei liberality in contributing to every public work. There is little force in such reasoning. A man's relations to a credi tor are vastly different from his relations to what is called the public. The demands of the one are definite, the claims of the other are just what the ambition of the man may make them.
The histories of honorably successful business men unite to exalt the importance of sticking to a legitimate business and it is most instructive to see that, in the greater portion of the failures, the real cause of disaster was the branching out beyond a legitimate business, in the taking hold of this and that tempting offer, and, for the sake of some great gain venturing where they did not know the ground, and could not know the pitfall.

The Inventor or Gas Lights.
The inventor of gas lights is said to have been a French man, Philippe Le Bon, an engineer of roads and bridges who in 1782 adopted the idea of using, for the purpose of illumination, the gases distilled during the combustion of wood. He labored for a long time in the attempt to perfect his crude invention, and it was not until 1799 that he confided his discovery to the Institute. In September, 1800, he took out a patent, and in 1801 he published a memoir containing the result of his researches. Le Bon commenced by distilling wood, in order to obtain from it gas, oil, pitch, and pyroligneous acid; but his work indicated the possibility of pyroligneous acid; but his work indicated the possibility of
obtaining gas by distillation from fatty or oily substances. obtaining gas by distillation from fatty or oily substances.
From 1799 to 1802, Le Bon made numerous experiments. From 1799 to 1802, Le Bon made numerous experiments.
He established at Havre his first thermo-lamps; but the gas which he obtained, being a mixture of carburetted hydrogen and oxide of carbon, and but imperfectly freed from its im purities, gave only a feeble light and involved an insupport able odor, and the result was that but little favor was shown to the new discovery; the inventor eventually died, ruined by his experiments. The English soon put in practice the crude ideas of Le Bon In 1804, one Winsor patented and claimed the credit of inventing the process of lighting by gas; in 1805 several shops in Birmingham were illuminated by gas manufactured by the process of Winsor and Mur dock; among those who used this new light was Watt, the inventor of the steam engine. In 1816 the first use was made of gas in London, and it was not until 1818 that this invention, really of French origin, was applied in France.

How the Centennial Revives Business.

Much has been said by the press throughout the country about the visitors to the Centennial, and the advantages to be derived by the Exhibition. But the American Builder advances an idea which we have not seen alluded to else where:
Every merchant and most well-to-do farmers and mechanics have visited some one of our large cities. But never before did they bring their wives and daughters. This last is the marked feature of the travel this year. For the first time in a number of cases, the wife, mother, and daughters have passed the borders of their native States. To them the crowded car, the well lighted hotel, the thronged streets, the new customs, are a revelation. They will carry back to their homes new wants and desires. Insensibly, perhaps, there will be a change in household and personal habits The furniture of the parlor and sleeping room will have additions and changes. Clothing once esteemed as tasteful will be replaced by other styles, not more expensive, but of differeut shades and shapes. The mechanic or the farmer will have new and enarged ideas of his power as a part of ur political and economical forces. This increased know ledge is one of the principal reasons whysuch expositions ar ncouraged; and it is to play no unimportant part in the pre sent marked revival of business activity.

To electrotype insects, ferns, etc., immerse the object in a solution of nitrate of silver in wood naphtha. When par tially dried, the object should be treated with ammonia. the result being a double salt easily reduced. After thorough drying, expose the article to the vapor of mercury, when the surface becomes completely metallized in a few minutes. It may then be placed in the bath and metal deposited in the usual way.

Brass cooking pans should be cleaned inside with vine gar and brick, then rinsed, thoroughly dried at the fire, and wiped with a clean cloth. White enameled pans require only a little soda and warm water to keep them clean and free from grease.

