LOCOMOTIVES AND RAILWAYS.

Our selections this week from Knight's " Mechanical Dictionary" (published in numbers by Messrs. Hurd \& Houghton, New York city) include a number of interesting engravings of locomotives, among which will be found represented the early machines of Stephenson and others, now carefully preserved as historical relics. We also give illustrations of two railways of curious construction. The

FERRY RAILWAY,
Fig. 1, has its track on the bottom of a water course, and Fig. 1.

the carriage which runs thereon has an elevated deck which supports the train. Chains are attached to the carriage and connected to engines on each side of the stream, and in this way the huge vehicle is pulled from shore to shore. A ferry of this kind is in existence at St. Malo, France, and there are others in various parts of Holland. It is a cheap substitute for a railway bridge. Fig. 2 represents Vignolles and Ericsson's
central friction rail,
which is grasped by apparatus from the locomotive, so that Fig. 2.
 a later is thus assisted in ascending grades. The rail
consists of a flat piece of consists of a flat piece of iron fixed in a vertical position in chairs, a. c, d are horizontal friction rollers, c being fixed and d movable on their respective shafts. To the driving axle, g, is attached bevel gear, h, is attached bevel gear, h i, Which rotates the shaft, e,
of the driving roller, c. The of the driving roller, c. The
friction roller, d, may be pressed against the rail by the lever, m, which is so connected as to be easily operated by the engineer. Thedriving wheels, $n o$, may be released from the power of the engine by disengaging the clutches, $p q$, so as to throw the whole force of the engine upon the griping rollers, $c \pi$, when ascending a grade. In Fig. 3 are represented
blenkinsop's and hedley's locomotives,
two of the earliest constructed machines. Blenkinsop's 10

A, Slenkinsop's Loramotive (1811
B,
Be
Hedley's Locomotive (1813).
comotive, in 1811, was usefully employed at the Middleton colliery in hauling coals on a tramway, the engine having spur wheels working into a rack on one side of the track. The engine, A, Fig. 3, was otherwise supported on four wheels. The fire was built in a large tube passing through the boiler, and the tube was bent up at the end to form a

Fig. 5.

chimney. Two vertical cylinders were placed above the connecting rods to cranks on the axles of spur pinions, which geared into the main spur wheel, which formed the driver. It was long used on a colliery railway between Leeds and Middletown, $3 \frac{1}{2}$ miles distant, and perhaps was the first successful locomotivein regular use. It drew trains of 30 tuns weight at $3 \frac{8}{4}$ miles per hour.
propelled by a gearin the center, driven by a pitman from the walking beam. Hedley's locomotive was objected to by esidents of Newcastle, on account of the smoke. He thereore passed the smoke into a large receiver, n, and turned he exhaust steam upon it. From the receiver the steam and smoke were conveyed by a pipe, b, to the chimney, which device soon developed into the steam blast. "Puffing Billy" was at work more or less until 1862, when it was laid up as a memorial in the British Patent Office Museum. Hedley died in 1842.

DODDS AND STEPHENSON's LOCOMOTIVE

In 1815, Dodds and Stephenson patented an engine (shown by side and end views, Fig. 4), in which the power might be applied either through wrists, at angles of 90° to each other on the driving wheel, or an endless chain working in gearing on the axles.
In 1829, the Liverpool and Manchester railway, then the most extensive and finished work of the kind ever under taken, was completed, and the directors offered a reward of $\$ 2,500$ for the best locomotive which should fulfill certain imposed conditions. Among these were that it was to consume its own smoke, and draw three times its own weight at a rate of not less than 10 miles an hour, and the boiler pres sure was not to exceed 50 lbs . per square inch. The weight was not to exceed 6 tuns, nor the cost $\$ 2,750$.

THE " ROCKET."

Three engines competed for the prize: the Rocket, con structed by George Stephenson; the Sanspareil, by Thomas Hackworth; the Novelty, by Messrs. Braithwaite and Er icsson. The Rocket weighed 4 tuns 5 cwt ., and its tender, with water and coke, 3 tuns 4 cwt . It had two loaded car riages attached, weighing a little over 9 tuns and 10 cwt . The greatest velocity attained was $24 \frac{1}{6}$ miles per hour, and the average consumption of coke per hour 217 lbs . See A, Fig. 5. The Sanspareil attained a speed of $22 \frac{2}{3}$ miles per hour, but with an expenditure of fuel per hour of 692 lbj . The Novelty carried its own waterand fuel. In consequence of successive accidents to the working arrangements, this engine was withdrawn from competition. A fourth ongine, the Perseverance, by Burstall, not being adapted to the track, was withdrawn.
The Rocket engine was superseded in 1837, belag condemned for life to the collieries. Here it proved itself capable of a rate of 60 miles an hour; but being gain convicted of levity while on duty, it was cashiered and its place filled by heavier machines of 12 tuns. After a v years of inglorious retirement, some one, not totally oblivious of how it would look in history, recalled the old soldier from his limbo, and now he enjoys the company of his elder brother Hedley's Puffing Billy, in the English Patent Museum.
In Fig. 5, A is an elevation of the Rocket. I ie boiler, a, is a cylinder 6 feet long, and has 25 tubes. The fire box, b, has two tubes, communicating with the boier below and above, and is surrounded by an exterior ca, ing, into which the water from the boiler flows and is maintained at the same level as that in the boiler. B is a longitudinal vertical

Fig. 6.

In the spring of 1813 , William Hedey built a locomotive section of a modern English locomotive, weich may serve with four sme with four The machine failed to accomplish much, on account of its
small boiler. Hedley thereupon, the same year, built ano-

stays. The tubes, a, are of brass, 124 in number, and the \begin{tabular}{l|l|l|l}
small boiler. Hedley thereupon, the same year, built ano- \& stays. The tubes, a, are of brass, 124 in number, and the

ther

ther engine (shown at B, Fig. 3), having a return-flue boiler, \& boiler has longitudinal stays connecting the ends. b is the

and mounted on eight driving wheels, which were coupled \& smoke box, into which the blast pipe, c, discharges. d is the
\end{tabular} and mounted on eight driving wheels, which were coupled together by intermediate gear wheels on the axles, and all

osopher, Professor Prestel," ascribes weather

the moon." Allow me to present my views.

The sun retrogrades in the plane proper of the ecliptic $50 \frac{1}{4}$ seconds, annually; and so of course does the earth, in her own orbit, as it were; and it takes her 20 minutes and 20 seconds, in other words, 1 year, 20 minutes, and 20 seconds, to reach the same point in the heavens that she was at, say,
on December 31 last at 12 o'clock at night. Twenty minutes on December 31 last at 12 o'clock at night. Twenty minutes
and twenty seconds amounts to one day, or one rotation of and twenty seconds amounts to one day, or one rotation of
the earth, in 70 y years. In 70 years and 8 months, therefore, the earth loses one day on the stars; and it will be seen in a moment or two that she loses the same amount, in the same space of time, on the winds and the weather; for the winds do not circulate round the earth, as supposed, but the earth turns-retrogrades round-to receive the winds, supposing them to blow from the same quarter.
To give a proper idea of what we mean, suppose the sun to be moving retrogressively at great velocity, and the earth in consequence to be ever meeting and stemming an etheric
current: suppose too that the earth's rotary motion is current: suppose too that the earth's rotary motion is
stopped, and that nothing but her orbital motion and the sun's is going on. In such a case, the etheric current would ever strike the earth on one point of her surface; that would be the point or side of her that is ever lying next to the cur rent. Now suppose that she retrogrades round her axis in a year, an amount equal to the $1-365\}$ of a rotation-an amount equal to 20 minutes and 20 seconds-the point on her surface that directly breasted, so to speak, the etheric breeze last year would not breast it this year; but one, a little more than 5° east from it, would. Thus, by the earth's westerly parallel current of storm seems, to all appearance and to meteorological evidence, to circulate easterly round the earth, while in reality it is the earth that is turning round to receive the ever parallel-flowing etheric breeze: a current that must ever flow directly from the sun as radiance, or be the result of the earth's being drawn, asit were, through ether by virtue of the sun's velocity, as a vessel propelled
through water meets the still water as if it were flowing in through water meets the still water as if it were flowing in
a current against it. This, I say, would give the winds and weather an apparent easterly motion round the earth in some seventy years: and thatis exactly as Mr. Schott finds I cite again from Harper's Magazine :

Mr. Schott finds no perceptible secular change in the temperature of the country, nor any decided connection between our temperature and the variations in solar spots For ten stations the mean temperature has been commuted for every day of the year, and it appears from these that
changes in the normal temperature of any day extend over large tracks of country, and progress in an easterly direclarge tracks of country, and progress in an easterly direc
tion." Thus I connect even the winds and the weather tion." Thus I connect even the winds and the weather
with solar retrograde motion, and I think that the moon has nothing to do witb the weather. She, in every 18 years, and all along through the 19 th year, so conjoins with the sun and earth that the four-sun, earth, moon, and storm cur-rent-are in line, or parallel with each other, and so a sort of periodic 19 years storm occurs. But the moon has no more to do with raising it than the surface of the earth ha with the so called seventy years oscila
When astronomers, meteorologists, and other scientists, can clearly see the sun and the whole solar system moving retrograde in the plane proper of the ecliptic, they will be much more able to tell how and why phenomena occur; an it will cost them less time and labor too, I think.

Gloucester city, N. J.

Join Hepburn.
The Corliss Engine at the Centennial.
To the E'ditor of the Scientific American
While watching the movements of this celebrated engine a few days ago, I noticed among its details two improve-
ments upon former engines of the Corliss style. The mos important of these oonsists in the placing of the valves in the heads of the cylinder instead of in the cylinder casting. This disposition of the valves does away with the eight triangular cavities in each cylinder which form the steam
 ports, namely, A, the inlet, B, the exhaust ports. The diagram shows
a cross section at one end of a cyla cross section at one end of a cyl-
inder through the center of the ports, the aggregate capacity of these ports being equal to from two
to four per cent of the steam used to four per cent of the steam used
in working the engine. By placing in working the engine. By placicg
the valves in the heads of the cylinder, they are brought almost in contact with the piston (when at the end of its stroke) from end to end of the ports, thus effecting a and of course enhancing the econof steam usually wasted, and of coars
omy of the engine in like proportion.
omy of the engine in like proportion.
Could a like improvement be made
locumotives, the consequent saving of fur the valve gear of locumotives, the consequent saving of fuel ought to give the inventor a fortune in a short time. In locomotives, from
five to ten per cent of the steam used is wasted in the huge passages between the valve and piston: and more, another benefit (aside from the direct saving of from five to ten per cent of steam, owing to the more perfect appropriation of the steam used, consequent upon the close proximity of the
valves to the piston) is lost. Some engineers argue that valves to the piston) is lost. Some engineers argue that cially in engines working under a high degree of expansion. By what line of sophistry they arrive at such a conclusion, I know not. They might, by the same reasoning, say that
sages long enough to contain half of the steam used. It makes no difference whether the steam is exhausted from the cylinder at 90 or at 5 lbs . pressure to the inch; the per entage of waste will be precisely the same. The cubic capa ity of the steam passages between the valve and the bore of the cylinder represents exactly the cubic quantity of team used over and above what is needed to work the engine; and the sooner locomotive builders realize this, the
sooner they will be prepared to reduce the length of these sooner they will be
wasteful passages.
Anotherimprovement noted in this engine consists in the nterposition of a short link between the rocker arm and he arm upon the valve stem, in such a way as to cause the valve to open and close quickly, and to remain open and almost stationary for a considerable interval. thus giving a very free exhaust and a timely and rapid opening and closing of the valves.
F. G. Woodward.

Worcester, Mass.

The Bude Canal in Cornvall, England.

To the Editor of the Scientific American

The Bude Canal, from Bude to Launceston, is said to have been working for fifty years. It was intended to transport ore from Launceston to Bude, but is now principally used to carry coal, and sand from the coast for manure for the farms. In order to carry the canal over the highest points of the land, a very simple and wonderfully effective plan has been carried out. The canal is made in sections, each on a level; and each two sections are joined by an inclined plane, on which are laid grooved rails. The barges, which are built or the purpose, are hauled bodily out of the canal laden with, say, 4 tuns of coal or sand, and drawn up the tramway with a chain, and launched again in the next section of canal, which starts from the top of the hill. There are in the entire length of the canal six of these planes, three between Bude to the highest point, and three down into Launceston. At Marham, about 12 miles up the canal from Bude, is the first ascent. I judged the length of the incline o be 800 feet, and the gradient 1 in 6 ; the total ascent, therefore, is about 130 feet. The barges are small, of about 5 feet bjam, and 15 feet in length, and are loaded with 4 tuns, total weight being 5 tuns each when loaded. Fitted on the flat bottoms are four wheels, which run in the grooved rails, laid like an ordinary tramway, in two lines up the incline. An endless cable passes between the rails, up one and down the other, and round large wheels at either nd. These wheels are fixed horizontally. The wheel of the upper end has a strong shaft or axis, which descends into a chamber below, where, by means of cogged wheels, it is connected with an enormous water wheel, the moving power. This water wheel is overshot, and has a diameter of 60 feet. The barge to be hauled up having been placed in position and fastened to the endless cable chain, the water wheel is set in motion, and the barge is rapidly drawn to the top of the incline and floated again in the upper canal. About two miles further up I came to Hobbacott, where is the second incline. This is longer and steeper, and is worked in a different manner. This incline is 900 feet long; total rise, 275 feet. At the top are two wells, 20 feet in diameter and 225 feet deep. At the bottom of each is an escape for water to flow out into the lower canal. Suspended in these wells, by massive cables from a horizontal roller, are two huge iron buckets, capable of holding 60 hogsheads of water each, and weighing, when full, 16 tuns. These are so arranged that, when one bucket is at the top of one well, the other bucket is at the bottom of the other. The bucket which is at the top of the well is filled with water from a sluice, and is allowed to descend; and in doing so, it raises the bucket in the other well, which comes up empty, the water having escaped through a valve which opened mechanically when the bucket reached the bottom. The alternate rising and falling of these buckets sets in moion the endless chain cable on the incline; and by means of cogged wheels, the power is so mul iplied that the descent of the bucket, weighing 16 tuns, into the well 225 feet deep. suffices to haul a barge weighing 5 tuns up the entire length of the incline, 900 feet, in the space of $4 \frac{1}{2}$ minutes. The whole of this machinery is worked by two men and a boy, with no further expense than the oil for the machine.
About nine miles further up the canal, at its highest point, is a vast reservoir messuring 60 acres, which supplies the water for working the canal.
London, England.
B. R. Plante.

The Supposed Planet Vulcan.

To the Editor of the Scientific American:
Please to add my testimony to that of others regarding the intra-mercurial planet. Unfortunately, when I saw the planet, supposing it to be known to astronomers, I did not attach such importance to the subject as to induce e to make memoranda, and at this distance of time can only think that it was about the year 1860. I was residing then in Washington Territory, and was superintending ome work on a prairie, a few miles from Fort Vancouver, on the Columbia River. A range of mountains was in the distance, from behind which the sun had reached an alti-
tude of about 30° above the horizon, when a amall boy asked me what was the matter with the sun. On looking at it I saw a planet, not as your correspondent saw it, but as a perfectly rounded, well defined dark spot, having with the disk a smaller relative proportion than that you have illustrated, and situated nearer the disk's diameter. I watched its progress till its completion without a telescope, merely glancing with partially closed eyes, at very short intervals. It was in the hight of summer, and the hour was so early that

